Co-funded by the Erasmus+ Programme of the European Union

Mongolian University of Science and Technology

Curriculum development and Registration office

COURSE SYLLABUS						
Course Title	Digital Signal Processing					
Course code F.EE703		No. of Credits	3			
Department Communication		School	SICT of MUST			
Pre-requisites Course Code	None	Co-requisites Course code	None			
Course coordinator	Erdenebayar.L	Room number	212			
Email	erdenebayar.l@must.edu.mn	Telephone No.	91008480			
Other Instructor(s)	None					
Learning Hours	rs Total: 144 Learning hours (2:2:0:5) Lecture(32 hr), Seminar(16 hr), Laboratory(16 hr), Assessment(80 hr)					
Course type	\square Compulsory \square Elective \square Selected elective \square Other					
Offer in Academic Year	Ifer in Academic ear \square 1st Semester \square 2nd Semester \square Summer \square Year Long					
Introduction language Mongolian or English						
AIMS AND OBJECTIVES:						
• The course aims to introduce concepts and methods of DSP.						
• It describe's disc	rete signals and systems and	their applications.				
Generate various process signal set	s discrete time signal sequenc equence	es and perform simple	e operations to			
• The course cove the discrete Four	rs discrete-time convolution, rier transform.	difference equations,	the z-transform and			
• Designing of bot	th recursive and non-recursive	e digital filters.				
• The use of MAT essential part of	LAB and Simulink for exampthe course.	ples and reinforcemer	nt of comprehension is			
ESSENTIAL READIN	NGS: (Journals, textbooks, v	vebsite addresses etc	2.)			
BIBLIOGRAPHY:						
• Oppenheim, Alan V Processing, 2nd edit	V. and Schafer, Ronald W. ion, Prentice-Hall, 1999, ISB	and Buck, John R., N: 978-0-137-54920-	Discrete-Time Signal 7.			
• Proakis, John G. and Manolakis, Dimitris G., Digital Signal Processing, 4th edition, Prentice Hall International, 2006, ISBN: 978-0-131-87374-2.						
• Hayes, Monson H. I COURSE DESCRIPT	Digital signal processing Tata	McGraw-Hill edition	n 2004			

This course provides an introduction to processing of discrete-time (DT) si	ignals. Fundamental
principles of DT systems and signals, in both time and Fourier domains, are presented	. These are followed
by modern applications of digital signal processing (e.g telecommunications). Through	ghout the course, the
focus is on developing techniques and algorithms for solving discrete-time signal pro-	cessing problems.
TEACHING METHODS: Flipped classroom and problem-based learning (B	lended learning)
COURSE CONTENT	Τ
Course topics for lecture:	hours
Introduction to the z-Transform	2
• Inverse z-Transform; Poles and Zeros	2
Radix-2 Fast Fourier Transforms	2
• The Cooley-Tukey and Good-Thomas FFTs	2
• Continuous-time filtering with digital systems; upsampling and downsampling	2
 Multirate signal processing and polyphase representations 	2
• FIR filter design using least-squares	2
• FIR filter design (Chebyshev)	2
• IIR filter design	2
Introduction to adaptive filtering; ARMA processes	2
• The Wiener filter	2
Gradient descent and LMS	2
Least squares and recursive least squares	2
Introduction to quantization	2
Differential quantization and vocoding	2
Perfect reconstruction filter banks and intro to wavelets	2
Course topics for seminar:	Seminar hours
• Signals and Linear, time-invariant systems	2
Convolution and its properties	2
The Fourier Series	2
The Fourier Transform	2
Frequency Response	2
The Discrete-Time Fourier Transform	2
The Discrete Fourier Transform	2
The Sampling Theorem	2
Course topics for laboratory:	Laboratory hours
Matlab for DSP; introduction to Coursework	2
• z-Transform	2
Fast Fourier Transforms	2
• FIR filter design	2
• IIR filter design	2
Adaptive filtering	2
• The Wiener filter	2
Differential quantization	2

COURSE LEARNING OUTCOMES (CLOs)						
By t						
1.	To describe the characteristics a mathematically;					
2.	2. Apply techniques in time and transform domains to the analysis and design of discrete-time systems;					
3.						
4.	4. Be able to explain and evaluate advanced technical concepts concisely and accurately					
5.	5. Be able to select, adapt and apply a range of mathematical techniques to solve advanced problems					
By the end of the laboratory, the student should be able to:						
6.	To design of FIR/IIR filters, draw frequency response of filters using MATLAB					
7.	7. To write object oriented DSP filter code in MATLAB which can be used in production					
8.	Identify the team work			•		
CO	URSE TEACHING AND LEAI	RNING ACTIVITIES				
Wee Trac	kly contact hours: (2:1:1:5)-1× litional and active learning met	2 hours lecture, 2×2 hours hods will be used within le	seminar, 2×2 ho ecture, seminar,	urs laboratory. laboratory and		
hom	ework assignments					
Learning methods /Pedagogy/		Types of teaching method		CLOs		
Problem based		✓ Lecture, Seminar		1,2,3,4,5		
Inquire based		✓ Laboratory		6,7,8		
CO	URSE ASSESSMENT METHO	DDS				
Assessment tools		Assessment frequency	Weight	Aligned CLOs		
Attendance/participation in class		Weekly	8%	1,2,3,4		
	Homework/assignment	Every 3 weeks	15%	2,3,6		
Midterm exam		8, 13 th week	15%	1,2,3,4		
Laboratory		Every 2 weeks	32%	6,7,8		
Final exam		17 th week	30%	1,2,3,4		
REVISED BY:						
Course coordinator L.Erdenebayar			Date:	25/08/2020		
API	PROVED BY:					
Hea	d of Department		Date:			