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Chapter 1. Introduction

Topic 1

Introduction
Handbook organization

Brief introductions of chapters

Control technology

Microcontroller

Today, the most popular and powerful control technologies applied in our routine life

are automatic and intelligent controls. In this book, we tried to provide a knowledge of

classical control technologies with a real microcontroller system AVR Atmega32.

It always felt that there is a gap that existed between the control theories and practical

control implementations, and this gap is not easy to be covered by most of the current

control books, including textbooks. The objective of this handbook is to provide students

a way or a bridge to cross over the gap mentioned above to enable them to combine

control theories they learned from classes with popular practical control targets together

to actually design, build, simulate, and �nally develop real control programs to perform

practical real-time closed-loop control strategies to real control targets to get optimal

control systems.

Students need to get much more detailed and actual control knowledge as well as tech-

niques for most popular and practical control systems, and furthermore to utilize the

knowledge and techniques, they learned from classes to personally and practically design

a complete control system with actual control objectives or targets to fully understand

what they have learned. For that purpose, a real and actual controller or a microcontroller

system is needed as a tool to enable students to develop control algorithms and programs

on it to realize the actual control functions for control targets or plants.

This handbook is about the theory and practice of microcontroller-based automatic

control systems engineering. With the help of these hardware and software as well as

practical application notes with real examples, students can design, develop, and build

some real and actual control systems by developing practical programming codes to con-

trol microcontrollers to perform real-time controls to some motor systems. All example

projects in the book have been compiled, built, and tested to help students to master the

main techniques and ideas.
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Chapter 1. Introduction

This book is composed of nine chapters with an easy study way to enable students

to learn classical control technologies e�ectively and practically. Each chapter contains

home works and exercises as well as lab projects to enable students to perform necessary

exercises to improve their learning and understanding of the related materials and tech-

nologies.

Chapter 1: Provide an overview and introduction about the book with highlights of

outstanding features and organizations of the book.

Chapter 2: Fundamental and basic control technologies, including the classic control

strategy, is discussed and introduced in this chapter. Both the open-loop and closed-loop

control systems are introduced with some actual examples.

Chapter 3: Sensors are an important part of closed-loop systems. In this chapter, we

will introduce analog and digital sensors and its important factors. This chapter discusses

commonly used sensors such as temperature, position, force, velocity and acceleration sen-

sor.

Chapter 4: Electric motors are the most prevalent �machines� in use in process plants.

This chapter �rst introduces the reader to this machine category, followed by basic motor

types. In this chapter, we will study the basic principle of operation and their charac-

teristics. It's important to understand motor characteristics so we can choose the right

one for our application requirements. We present two kinds of motors, DC motor, and

Stepper motor. We will learn how to control the speed of these motors.

Chapter 5: In this chapter explain the role of the CPU, memory and I/O device in a

microprocessor system. Distinguish between the microprocessor and microcontroller.

Chapter 6: The handbook is based on the C programming language. Chapter 6 gives a

brief introduction to the features of this language.

Chapter 7: This chapter is devoted to the popular AVR microcontroller family which

is described and used in this book. This chapter is a general introduction to AVR mi-

crocontrollers regarding their features and capabilities. The AVR features such as the

internal architecture, the memory system, and the registers are presented in this chapter.

These features are presented only with the needed level of details in order to be easily

understandable by the reader without any hard work.

Chapter 8:: The main topic of this chapter is concentrated on the PID control system

design and analysis. The stability of a control system is one of the most important topics

in control engineering.

Chapter 9: Presents a case study. Programming examples are given to show how a

particular realization can be programmed and implemented on a microcontroller.
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Topic 2

Control System
Open loop system

Closed loop system

Feedback control system

Transfer function

System is a group of related things that work together as a whole[1]. These things

can be real or imaginary. Systems can be man-made things like a car engine or natural

things like a star system. Systems can also be concepts made by people to organize ideas.

A control system manages, commands, directs, or regulates the behavior of other de-

vices or systems using control loops [2]. It can range from a single home heating controller

using a thermostat controlling a domestic boiler to large industrial control systems that

are used for controlling processes or machines.

Two popular control systems are open-loop and closed-loop control systems[1]. A con-

trol system should contain a controller to perform various control functions to the system

to get the desired outputs. Therefore, a complete control system should be composed of

inputs, the controller, the system or a process, and the system outputs. Most control sys-

tems in our world are closed-loop control systems, but some of them belong to open-loop

control systems.

2.1 Open loop system

In an open-loop control system, the control action from the controller is independent of

the process variable. An example of this is a central heating boiler controlled only by a

timer. The control action is switching on or o� of the boiler. The process variable is the

building temperature. This controller operates the heating system for a constant time

regardless of the temperature of the building.

Another open-loop control system is a microwave oven and its operational procedure can

be illustrated in Fig 2.1.

3



Chapter 2. Control System

Figure 2.1: Open loop system

By setting the desired time interval (set value), which can be considered as the input,

the timer, and the heater (controller) can start and delay the desired period of time to

enable the heater to heat the food (process) to the appropriate temperature (output).

The reason we call this kind of control system as an open-loop system is that the output

has no in�uence or e�ect on the control action of the input signal. In other words, in this

open-loop control system, the output is neither measured nor feedback for comparison

with the input. Therefore, an open-loop system is expected to faithfully follow its input

command or set point regardless of the �nal result. This control system is also called a

non-feedback control system [1]. Furthermore, an open-loop system has no knowledge

about the output condition, such as the food temperature, so it cannot self-correct any

errors it could make when the set value drifts, even if this results in large deviations from

the set value. Another disadvantage of an open-loop system is that they cannot handle

disturbances or changes in the conditions which may reduce its ability to complete the

desired task.

For example, the microwave door opens and the heat is lost. The timing controller con-

tinues regardless of the full-time interval but the food is not heated at the end of the

heating process. This is because there is no information feedback to maintain a constant

temperature that is equal or closed to the input (set value). One of the possible prob-

lems is that the open-loop system errors, such as environmental temperature changing or

timer fault operations, can disturb the food heating process and, therefore, requires extra

supervisory attention of a user such as an operator. The problem with this anticipatory

control approach is that the user needs to monitor the process temperature frequently

and take any corrective control action whenever the food heating process deviates from

its desired value of the set value. This kind of disturbance could be reduced by periodi-

cally monitoring the relationship between the set value and the motor running speed, and

by increasing or decreasing the set value manually.

The advantages of this open-loop control are that it is low-cost and simple and easy to

implement, thus making it ideal for use in well de�ned systems where the relationship

between the input and the output are direct and not in�uenced by outside disturbances.

However, open-loop control is useful and economic for well de�ned systems where the

4
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relationship between input and the output can be reliably modeled by a mathematical

formula. For example, determining the voltage to be fed to an electric DC motor that

drives a constant load, in order to achieve a desired rotating speed would be a good

application. But if the loads were not predictable and became excessive, the motor's

speed might vary as a function of the loads and not just the input voltage and an open-

loop controller would be insu�cient to ensure repeatable control of the velocity.

Based on the above discussions, an open-loop control system has the following potential

problems:

• There is no comparison between actual input and desired output values.

• Has no self-regulation or self control action over the output value.

• Each input settings determines a �xed output value for the controller.

• Cannot reduce or overcome all variations or disturbances coming from the external

conditions.

In order to solve these potential problems and improve the performance of the entire

control system, we need to take a look at another type of control system, closed-loop, or

feedback control system.

2.2 Closed loop System

A closed-loop control system that is also known as a feedback control system is a

control system that uses the concept of an open-loop system as its forward path has one

or more feedback loops or paths between its output and its input[1]. The reference to

feedback simply means that some portion of the output is returned back to the input to

form part of the system's excitation.

Closed-loop systems are designed to automatically achieve and maintain the desired

output by comparing it with the actual input condition.

It does this by comparing a part of the entire feedback from the output and the desired

input to generate an error signal, which is the di�erence between the output and the

reference input.

Error = Input−Output
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In other words, a closed-loop system is a fully automatic control system in which its con-

trol action being dependent on the output in some way.

Our previous microwave oven as an example, and it can become a closed-loop control

system by adding a feedback path with a sensor that is used to detect the actual temper-

ature of the food and a comparator that is used to compare the feedback output with the

input (set value). An error signal can be obtained by comparing the feedback output and

the input, and this error signal can be used as input to the controller to automatically

adjust the output to make it to the desired input set value or make the output as closely

equal to the input as possible. This sensor would monitor the actual temperature of the

food and compare it with or subtract it from the input reference. The error signal is then

ampli�ed by the controller, and the controller output makes the necessary correction to

the heating system to reduce any error.

For example, if the food is not hot enough, the controller may increase the temperature

or the heating time. Likewise, if the food is very hot, then the controller may reduce the

temperature or stop the process so as not to overheat or burn the food.

The closed-loop con�guration is de�ned by the feedback signal, derived from the sensor

or a thermometer in our food heating system.

The magnitude and polarity of the error signal would be directly related to the di�er-

ence between the required heating temperature and actual food temperature. The term

closed-loop control always means the use of feedback control in order to reduce any errors

between the output and the input. Just because of this feedback, it distinguishes the

major di�erences between an open-loop and a closed-loop system.

The accuracy of the output thus depends on the feedback path, which in general can be

made very accurate and within electronic control systems and circuits.

From this simple example, it can be found that a closed-loop system has many advantages

over open-loop systems. The primary advantage of a closed-loop feedback control system

is its ability to reduce a system's sensitivity to external disturbances and can automati-

cally correct or modify the error to make the output as equal to the input as possible.

Another point to be noted for this feedback control system is that the feedback path or

the sensor must be able to provide the two following functions:

1. Direct a part of the entire output back to the input to allow the comparator to

compare the input and the output to get a di�erence or an error signal as an updated

input to the controller.

2. Convert the output type to the input type to make this comparison possible.

As shown in our food heating closed-loop control system in Fig.2.2, the sensor not only

provides feedback from the output to the input but also needs to convert the output type

(food temperature) to the input type (timer setup value). By adjusting the timer setup

6
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value, the food temperature can be modi�ed and changed to the desired temperature.

Otherwise, the comparison between the input and the output cannot be executed because

of the di�erent types of input and output.

Figure 2.2: Closed loop system

Compared to the open-loop control system, closed-loop control systems have many

advantages over open-loop systems. One advantage is that the use of feedback makes the

system response relatively insensitive to external disturbances and internal variations in

system parameters such as temperature or variation on elements. It is thus possible to use

relatively inaccurate and cheaper components to obtain the accurate control of a given

process or plant.

Based on the discussions above, we can conclude that a closed-loop control system is

better than an open-loop control system with the following advantages:

1. Reducing errors by automatically adjusting the system's input.

2. Improving the stability of an unstable system.

3. Reducing the system's sensitivity to enhance robustness against external distur-

bances or internal variations to the process.

4. Producing a reliable and repeatable performance.

7



Chapter 2. Control System

2.3 System Design

A control system consists of subsystems and processes (or plants) assembled for the

purpose of obtaining the desired output with desired performance, given a speci�ed input.

Figure 2.3 shows a control system in its simplest form, where the input represents the

desired output.

Figure 2.3: Control system

For example, consider an elevator. The push of the fourth-�oor button is an input that

represents our desired output, shown as a step function in Figure 2.4. The performance

of the elevator can be seen from the elevator response curve in the �gure.

Two major measures of performance are apparent:

(1) the transient response

(2) the steady-state error

Figure 2.4: Transient response

In our example, passenger comfort and passenger patience are dependent upon the

transient response. If this response is too fast, passenger comfort is sacri�ced; if too slow,

passenger patience is sacri�ced. The steady-state error is another important performance

8



Chapter 2. Control System

speci�cation since passenger safety and convenience would be sacri�ced if the elevator did

not properly level.

We brie�y allude to some control system performance speci�cations, such as transient

response and steady-state error.

The analysis is the process by which a system's performance is determined. For example,

we evaluate its transient response and steady-state error to determine if they meet the

desired speci�cations.

Design is the process by which a system's performance is created or changed. For ex-

ample, if a system's transient response and steady-state error are analyzed and found not

to meet the speci�cations, then we change parameters or add additional components to

meet the speci�cations.

Transient response is important. In the case of an elevator, a slow transient response makes

passengers impatient, whereas an excessively rapid response makes them uncomfortable.

If the elevator oscillates about the arrival �oor for more than a second, a disconcerting

feeling can result. Transient response is also important for structural reasons: Too fast a

transient response could cause permanent physical damage.

Another analysis and design goal focuses on the steady-state response. As we have seen,

this response resembles the input and is usually what remains after the transients have

decayed to zero. We are concerned about the accuracy of the steady-state response. We

de�ne steady-state errors quantitatively, analyze a system's steady-state error, and then

design corrective action to reduce the steady-state error, our second analysis and design

objective.

Discussion of transient response and steady-state error is moot if the system does not

have stability. Control systems must be designed to be stable. That is, their natural

response must decay to zero as the time approaches in�nity, or oscillate. In many sys-

tems, the transient response you see on a time response plot can be directly related to

the natural response. Thus, if the natural response decays to zero as the time approaches

in�nity, the transient response will also die out, leaving only the forced response. If the

system is stable, the proper transient response and steady-state error characteristics can

be designed. Stability is our third analysis and design objective.

9
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2.4 Control System Transfer Function

A transfer function represents the relationship between the output signal of a control sys-

tem and the input signal, for all possible input values. A block diagram is a visualization

of the control system which uses blocks to represent the transfer function, and arrows

which represent the various input and output signals.

Figure 2.5: Transfer function

In a Laplace Transform, if the input is represented by R(s) and the output is repre-

sented by C(s), then the transfer function will be:

G(s) =
C(s)

R(s)
(2.1)

R(s)G(s) = C(s) (2.2)

It is not necessary that the output and input of a control system are of the same

category. For example, in electric motors, the input is an electrical signal whereas the

output is mechanical signal since electrical energy required to rotate the motors. Similarly

in an electric generator, the input is a mechanical signal and the output is an electrical

signal since mechanical energy is required to produce electricity in a generator. But for

mathematical analysis, of a system, all kinds of signals should be represented in a similar

form. This is done by transforming all kinds of signals to their Laplace form. Also, the

transfer function of a system is represented by Laplace form by dividing output Laplace

transfer function to input Laplace transfer function. Hence a basic block diagram of a

control system can be represented as

Figure 2.6: Transfer function

There are major two ways of obtaining a transfer function for the control system. The

ways are:

• Block Diagram Method: It is not convenient to derive a complete transfer function

for a complex control system. Therefore the transfer function of each element of a control

10
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system is represented by a block diagram. Block diagram reduction techniques are applied

to obtain the desired transfer function.

• Signal Flow Graphs: The modi�ed form of a block diagram is a signal �ow graph.

The block diagram gives a pictorial representation of a control system. The signal �ow

graph further shortens the representation of a control system.

1. What is the open-loop control system? Draw its block diagram

2. What is the closed-loop control system? Draw its block diagram

3. What is the major di�erence between the open-loop control system and closed-loop

control system?

4. Indicate which are open-loop or closed-loop control systems for the following systems.

a. The man driving car

b. Tra�c light

c. white line following robot

d. Toaster

e. A microwave heating process.

5. Draw a block diagram of a home heating system, and identify the function of each

component and input and output signals.

6. What is the transient response?

7. What is the steady-state error?

8. Draw the transient response of the elevator that goes very fast.

9. What is the system transfer function?

10. Draw a block diagram of a toaster, imagine if it's a closed-loop system.

11
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Chapter 3. Sensors used in Microcontroller

Topic 3

Sensors
Analog vs Digital sensors

Sensor's factors

Sensor's error

Sensor types

Sensor - an electrical/mechanical/chemical device that maps an environmental at-

tribute to a quantitative measurement [3]. Each sensor is based on a transduction principle

- conversion of energy from one form to another.

Classi�cation of Sensors:

• Internal state vs. external state
� feedback of robot internal parameters, e.g. battery level, wheel position, joint angle,

etc,

� observation of environments, objects

• Active vs. non-active
� emitting energy into the environment, e.g., radar, sonar

� passively receive energy to make observation, e.g., camera

• Contact vs. non-contact
• Visual vs. non-visual

� vision-based sensing, image processing, video camera

Sensors are an important part of closed-loop systems [4]. A sensor is a device that outputs

a signal which is related to the measurement of a physical quantity such as temperature,

speed, force, pressure, displacement, acceleration, torque, �ow, light or sound. Sensors

are used in closed-loop systems in the feedback loops, and they provide information about

the actual output of a plant. For example, a speed sensor gives a signal proportional to

the speed of a motor and this signal is subtracted from the desired speed reference input

in order to obtain the error signal.

Sensors can be classi�ed as analog or digital. Analog sensors are more widely avail-

able, and their outputs are analog voltages. For example, the output of an analog temper-

ature sensor may be a voltage proportional to the measured temperature. Analog sensors

13
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can only be connected to a computer by using an A/D converter. Digital sensors are

not very common and they have logic level outputs that can directly be connected to a

computer input port. The choice of a sensor for a particular application depends on many

factors such as the cost, reliability, required accuracy, resolution, range and linearity of

the sensor.

Some important factors are described below.

Range. The range of a sensor speci�es the upper and lower limits of the measured

variable for which a measurement can be made. For example, if the range of a temperature

sensor is speci�ed as 10�60◦C then the sensor should only be used to measure temperatures

within that range.

Resolution. The resolution of a sensor is speci�ed as the largest change in measured

value that will not result in a change in the sensor's output, i.e. the measured value can

change by the amount quoted by the resolution before this change can be detected by the

sensor. In general, the smaller this amount the better the sensor is, and sensors with a

wide range have less resolution. For example, a temperature sensor with a resolution of

0.001K is better than a sensor with a resolution of 0.1K.

Repeatability. The repeatability of a sensor is the variation of output values that

can be expected when the sensor measures the same physical quantity several times. For

example, if the voltage across a resistor is measured at the same time several times we

may get slightly di�erent results.

Linearity. An ideal sensor is expected to have a linear transfer function, i.e. the

sensor output is expected to be exactly proportional to the measured value. However, in

practice, all sensors exhibit some amount of nonlinearity depending upon the manufac-

turing tolerances and the measurement conditions.

Dynamic response. The dynamic response of a sensor speci�es the limits of the

sensor characteristics when the sensor is subject to a sinusoidal frequency change. For

example, the dynamic response of a microphone may be expressed in terms of the 3 dB

bandwidth of its frequency response.
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3.1 Temperature Sensor

Temperature is one of the fundamental physical variables in most chemical and process

control applications. Accurate and reliable measurement of the temperature is important

in nearly all process control applications. Temperature sensors can be analog or digital.

Some of the most commonly used analog temperature sensors are thermocouples, resis-

tance temperature detectors (RTDs) and thermistors. Digital sensors are in the form

of integrated circuits. The choice of a sensor depends on the accuracy, the tempera-

ture range, speed of response, thermal coupling, the environment (chemical, electrical, or

physical) and the cost.

Sensor Temperatur range (◦C) Accuracy(±◦C) Cost Robustness
Thermocouple -270 to +2600 1 Low Very high
RTD -200 to +600 0.2 Medium High
Thermistor -50 to +200 0.2 Low Medium
Integrated cir-
guit

-40 to +125 1 Low Low

A popular voltage output analog integrated circuit temperature sensor is the LM35,

manufactured by National Semiconductors Inc. (see Figure 3.1). This is a 3-pin analog

output sensor which provides a linear output voltage of 10mV/◦C. The temperature range

is 0◦C to +100◦, with an accuracy of 1.5◦C.

Figure 3.1: Tempetarure sensor
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There can be several sources of error during the measurement of temperature. Some

important possible errors are described below.

Sensor self-heating. RTDs, thermistors and integrated circuit sensors require an

external power supply for their operation. The power supply can cause the sensor to

heat, leading to an error in the measurement. The e�ect of self-heating depends on the

size of the sensor and the amount of power dissipated by the sensor. Self-heating can be

avoided by using the lowest possible external power, or by considering the heating e�ect

in the measurement.

Electrical noise. Electrical noise can introduce errors into the measurement. Ther-

mocouples produce very low voltages and, as a result, noise can easily enter the measure-

ment. This noise can usually be minimized by using low-pass �lters, and by keeping the

sensor leads as short as possible and away from motors and other electrical machinery.

Mechanical stress. Some sensors such as RTDs are sensitive to mechanical stress and

should be used carefully. Mechanical stress can be minimized by avoiding the deformation

of the sensor.

Thermal coupling. It is important that for accurate and fast measurements the

sensor should make good contact with the measuring surface. If the surface has a thermal

gradient then incorrect placement of the sensor can lead to errors. If the sensor is used

in a liquid, the liquid should be stirred to cause a uniform heat distribution. Integrated

circuit sensors usually su�er from thermal coupling since they are not easily mountable

on surfaces.

Sensor time constant. The response time of the sensor can be another source of

error. Every type of sensor takes a �nite time to respond to a change in its environment.

Errors due to the sensor time constant can be minimized by improving the coupling

between the sensor and the measuring surface.

3.2 Position Sensor

Position sensors are used to measure the position of moving objects. These sensors are

basically of two types: sensors to measure linear movement, and sensors to measure

angular movement.

The most commonly used of all the �Position Sensors�, is the potentiometer because it is

an inexpensive and easy to use a position sensor. Potentiometers are available in linear

and rotary forms.
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Potentiometer has a wiper contact linked to a mechanical shaft that can be either angular

(rotational) or linear (slider type) in its movement, and which causes the resistance value

between the wiper/slider and the two end connections to change giving an electrical

signal output that has a proportional relationship between the actual wiper position on

the resistive track and its resistance value. In other words, resistance is proportional to

position.

When used as a position sensor the moveable object is connected directly to the rotational

shaft or slider of the potentiometer. This con�guration produces a potential or voltage

divider type circuit output which is proportional to the shaft position. For example, if you

apply a voltage of say 10V across the resistive element of the potentiometer the maximum

output voltage would be equal to the supply voltage at 10 Volts, with the minimum output

voltage equal to 0 Volts. Then the potentiometer wiper will vary the output signal from

0 to 10 Volts, with 5 Volts indicating that the wiper or slider is at its half-way or center

position.

Figure 3.2: Potentiometer as position sensor

Figure 3.3: Potentiometer as position sensor
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The rotary potentiometer can be used to measure angular position. If V i is again the

applied voltage, the voltage across the arm is given by

Va = kViθ (3.1)

where θ is the angle of the arm, and k is a constant.

Potentiometer type position sensors are low-cost, but they have the disadvantage that the

range is limited and also that the sensor can be worn out by the excessive movement of

the shaft. Among other types of position sensors are capacitive sensors, inductive sensors,

linear variable di�erential transformers (LVDTs) and optical encoders

3.3 Distance measuring sensors

Distance sensors generally work by outputting a signal of some kind, (eg laser, IR LED,

ultrasonic waves) and then reading how it has changed on its return. That change may

be in the intensity of the returned signal, the time it takes the signal to return, etc.

An ultrasonic sensor is an instrument that measures the distance to an object using

ultrasonic sound waves. An ultrasonic sensor uses a transducer to send and receive ul-

trasonic pulses that relay back information about an object's proximity. High-frequency

sound waves re�ect from boundaries to produce distinct echo patterns. Ultrasonic sensors

work by sending out a sound wave at a frequency above the range of human hearing. The

transducer of the sensor acts as a microphone to receive and send the ultrasonic sound.

The ultrasonic sensor uses a single transducer to send a pulse and to receive the echo. The

sensor determines the distance to a target by measuring time lapses between the sending

and receiving of the ultrasonic pulse.

Figure 3.4: Ultrasonic sensor

Time of Flight: 2610 us

Speed of Sound: 58us/cm

Range(cm) = Time of Flight / Speed of Sound

Range(cm) = 2610us /(58us/cm)

Range = 45cm
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The working principle of this module is simple. It sends an ultrasonic pulse out at 40

kHz which travels through the air and if there is an obstacle or object, it will bounce back

to the sensor. By calculating the travel time and the speed of sound, the distance can be

calculated.

A laser distance meter works by using measuring the time it takes a pulse of laser light

to be re�ected o� a target and returned to the sender. This is known as the "time of �ight"

principle, and the method is known either as �time of �ight� or �pulse� measurement. A

laser distance meter emits a pulse of the laser at a target. The pulse then re�ects o� the

target and back to the sending device (in this case, a laser distance meter). This "time

of �ight" principle is based on the fact that laser light travels at a fairly constant speed

through the Earth's atmosphere. Inside the meter, a simple computer quickly calculates

the distance to a target. This method of distance calculation is capable of measuring the

distance from the Earth to the moon within a few centimeters. Laser distance meters

may also be referred to as �range �nders� or �laser range �nders.�

The distance between the meter and target is given by D = ct/2, where c equals the speed

of light and t equals the amount of time for the round trip between meter and target.

Given the high speed at which the pulse travels and its focus, this rough calculation is

very accurate over distances of feet or miles but loses accuracy over much closer or farther

distances.

Ultrasound is intrinsically less accurate because the sound is far more di�cult to

focus than laser light. Accuracy is typically several centimeters, compared with a few

millimeters for laser. An ultrasound needs a fairly large, smooth, �at surface as the

target, so that is a severe limitation. You can't measure a narrow pipe, for example. The

ultrasound signal spreads out in a cone from the meter and any objects in the way can

interfere with the measurement. Even with laser aiming, you can't always be sure that

the surface from which the sound re�ection is detected is the same as that where the laser

dot is showing. This can lead to gross errors.
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Figure 3.5: Ultrasonic sensor

3.4 Force sensor

There are many types of force sensors. A 1N Force will cause 1 kg mass to accelerate at

1m/s2. Force sensing (solids) and Pressure sensing (liquids and gases) are tied together.

Pressure sensing requires the measurement of force (P=F/Area). The pressure is Force

distributed over a large area whereas Force is concentrated on a spot. Types of force

sensors:

• Strain Gauge

• Tactile Sensors
• Touch Sensors

• Piezoelectric Sensors
A strain gauge can be used to measure force accurately. There are many di�erent

types of strain gauges. A strain gauge can be made from capacitors and inductors, but

the most widely used types are made from resistors. A wire strain gauge is made from a

resistor, in the form of a metal foil. The principle of operation is that the resistance of

a wire increases with increasing strain and decreases with decreasing strain. In order to

measure strain with a strain gauge, it must be connected to an electrical circuit, and a

Wheatstone bridge is commonly used to detect the small changes in the resistance of the

strain gauge. Strain gauges can be used to measure force, load, weight pressure, torque

or displacement.
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Figure 3.6: Strain gauge sensor

Force can also be measured using the principle of piezoelectricity. A piezoelectric

sensor produces a voltage when a force is applied to its surface. The disadvantage of this

method is that the voltage decays after the application of the force and thus piezoelectric

sensors are only useful for measuring dynamic force.

3.5 Velocity and acceleration sensors

Velocity is the di�erentiation of position, and in general position sensors can be used to

measure velocity. The required di�erentiation can be done either in hardware (e.g. using

operational ampli�ers) or by the computer.

There are two types of velocity sensors: linear sensors, and rotary sensors. Linear velocity

sensors can be constructed using a pair of coils and a moving magnet. When the coils are

connected in series, the movement of the magnet produces an additive voltage which is

proportional to the movement of the magnet. One of the most widely used rotary velocity
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sensors is the tachometer (or tachogenerator). A tachometer is connected to the shaft of

a rotating device (e.g. a motor) and produces an analog voltage that is proportional to

the speed of the shaft. If ω is the angular velocity of the shaft, the output voltage of the

tachometer is given by

Vo = kω (3.2)

where k is the gain constant of the tachometer.

Another popular velocity sensor is the optical encoder. This basically consists of a light

source and a disk with opaque and transparent sections where the disk is attached to the

rotating shaft. A light sensor at the other side of the wheel detects light and a pulse is

produced when the transparent section of the disk comes round. The encoder's controller

counts the pulses in a given time, and this is proportional to the speed of the shaft.

Figure 3.7: Rotary encoder

Acceleration is the di�erentiation of velocity or the double di�erentiation of position.

Thus, in general, position sensors can be used to measure acceleration. The di�erentia-

tion can be done either by using operational ampli�ers or by a computer program. For

accurate measurement of the acceleration, semiconductor accelerometers can be used.
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1. What is the di�erence between active and non-active sensors?

2. What is the di�erence between digital and analog sensors?

3. Make a small experiment. But thermistor on the hot water and take a characteristic

of thermister.

4. Make a small experiment. Using potentiometer draw a characteristic between angle

and resistor value.

5. Calculate the distance of the ultrasonic sensor if the Time of Flight was 3700 us.

6. Explain how to work a strain gauge sensor. Draw quarter bridge strain gauge circuit.

7. Explain how to work a rotary encoder sensor. Is it possible to measure the acceleration

of the object?

8. What kind of sensor can be used to control a tra�c light?

9. Draw a block diagram of a closed-loop system with a force sensor? What king system

could it be?

10. Calculate the distance of the laser sensor if the Time of Flight was 900 us.
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Topic 4

Electric motors
DC motor vs AC motor and Stepper motor

Bridge control

Pulse Width Modulation

Optoisolator

An electric motor is an electrical machine that converts electrical energy into mechanical

energy [5]. Most electric motors operate through the interaction between the motor's

magnetic �eld and electric current in a wire winding to generate force in the form of

rotation of a shaft. Electric motors can be powered by direct current (DC) sources, such as

from batteries, motor vehicles or recti�ers, or by alternating current (AC) sources, such

as a power grid, inverters or electrical generators. An electric generator is mechanically

identical to an electric motor, but operates in the reverse direction, converting mechanical

energy into electrical energy.

4.1 DC motor control

A direct current (DC) motor is a widely used device that translates electrical pulses into

mechanical movement. In the DC motor, we have only + and - leads. Connecting them

to a DC voltage source moves the motor in one direction. By reversing the polarity, the

DC motor will move in the opposite direction. For example, the small fans used in many

motherboards to cool the CPU are run by DC motors. When the leads are connected to

the + and - voltage source, the DC motor moves continuously.

The maximum speed of a DC motor is indicated in rpm (revolutions per minute)

and is given in the datasheet. The DC motor has two rpms: no-load and loaded. The

manufacturer's datasheet gives the no-load rpm. The no-load rpm can be from a few

thousand to tens of thousands. The rpm is reduced when moving a load and it decreases

as the load is increased.

For example, a drill turning a screw has a much lower rpm speed than when it is in

the no-load situation. DC motors also have voltage and current ratings. The nominal

voltage is the voltage for that motor under normal conditions and can be from 1 to 150

V, depending on the motor. As we increase the voltage, the rpm goes up. The current

rating is the current consumption when the nominal voltage is applied with no load and

25



Chapter 4. Electric motors

can be from 25 mA to a few amps. As the load increases, the rpm is decreased, unless the

current or voltage provided to the motor is increased, which in turn increases the torque.

With a �xed voltage, as the load increases, the current (power) consumption of a DC

motor is increased. If we overload the motor it will stall, and that can damage the motor

due to the heat generated by high current consumption. Figure 4.1 shows the DC motor

rotation for clockwise (CW) and counter-clockwise (CCW) rotations.

Figure 4.1: DC motor rotation

With the help of relays or some specially designed chips we can change the direction

of the DC motor rotation. Figure 4.2 show the basic concepts of H-bridge control of DC

motors.

Figure 4.2: H-bridge control
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Figure 4.3 shows an invalid con�guration. Current �ow directly to ground, creating

a short circuit. The same e�ect occurs when switches 1 and 3 are closed or switches 2

and 4 are closed.

Figure 4.3: H-bridge invalid con�guration

Motor operation SW1 SW2 SW3 SW4
O� Open Open Open Open
Clockwise Closed Open Open Closed
Counterclockwise Open Closed Closed Open
Invalid Closed Closed Closed Closed

The optoisolator is indispensable in many motor control applications. Notice that

the AVR is protected from EMI created by motor brushes by using an optoisolator and a

separate power supply. Figure 4.4 show optoisolators for single directional motor control,

and the same principle should be used for most motor applications. Separating the power

supplies of the motor and logic will reduce the possibility of damage to the control circuit.

Figure 4.4 shows the connection of a bipolar transistor to a motor. The protection of the

control circuit is provided by the optoisolator. The motor and AVR use separate power

supplies.
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Figure 4.4: DC motor with optoisolator

The separation of power supplies also allows the use of high-voltage motors. Notice

that we use a decoupling capacitor across the motor, this helps reduce the EMI created

by the motor. The motor is switched on by clearing bit PB0.

The speed of the motor depends on three factors: (a) load, (b) voltage, and (c) current.

For a given �xed load we can maintain a steady speed by using a method called pulse

width modulation (PWM). By changing (modulating) the width of the pulse applied

to the DC motor we can increase or decrease the amount of power provided to the motor,

thereby increasing or decreasing the motor speed.

Notice that, although the voltage has a �xed amplitude, it has a variable duty cycle. That

means the wider the pulse, the higher the speed. PWM is so widely used in DC motor

control that some microcontrollers come with the PWM circuitry embedded in the chip.

In such microcontrollers, all we have to do is load the proper registers with the values

of the high and low portions of the desired pulse, and the rest is taken care of by the

microcontroller. This allows the microcontroller to do other things. For microcontrollers

without PWM circuitry, we must create the various duty cycle pulses using software,

which prevents the microcontroller from doing other things.

The ability to control the speed of the DC motor using PWM is one reason that DC

motors are often preferred over AC motors.
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4.2 Stepper motor control

Asynchronous and brushless DC motor that converts electrical pulses into mechanical

movements and thus, rotates stepwise with a certain angle between each step for com-

pleting a full rotation is called as Stepper Motor. The angle between the steps of rotation

of the stepper motor is termed as the stepper angle of the motor.

Stepper motors are DC brushless motors that can rotate from 0◦ to 360◦ in steps. Stepper

motor uses electronic signals to rotate the motor in steps and each signal rotates the shaft

in the �xed increment (one step). The rotation angle is controlled by applying a certain

sequence of signals. Unlike Servo motor, stepper motors can be driven by using GPIO

pins of microcontroller rather than PWM pins and can rotate in (+360◦) and (-360◦).

The order of signals decides the clockwise and counter-clockwise direction of the stepper

motor. To control the speed of the motor, we just need to change the rate of control

signals applied.

The stepper motors rotate in steps. This is very useful because it can be precisely posi-

tioned without any feedback sensor, which represents an open-loop controller. The stepper

motor consists of a rotor that is generally a permanent magnet and it is surrounded by

the windings of the stator.

As we activate the windings step by step in a particular order and let a current �ow

through them they will magnetize the stator and make electromagnetic poles respectively

that will cause propulsion to the motor. So that is the basic working principle of the

stepper motors.

There are several modes of steps to operate Stepper Motor such as full step, half step and

microstep.

The �rst one is the Wave Drive or Single-Coil Excitation. In this mode we active just

one coil at a time which means that for this example of a motor with 4 coils, the rotor

will make full cycle in 4 steps.

Figure 4.5: Wave drive
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The Full Step Drive mode which provides much higher torque output because we

always have 2 active coils at a given time. However, this doesn't improve the resolution

of the stepper and again the rotor will make a full cycle in 4 steps.

Figure 4.6: Full step

For increasing the resolution of the stepper we use the Half Step Drive mode. This

mode is actually a combination of the previous two modes. Here we have one active coil

followed by 2 active coils and then again one active coil followed by 2 active coils and so

on. So with this mode, we get double the resolution with the same construction. Now

the rotor will make full cycle in 8 steps.

Figure 4.7: Half step

However, the most common method of controlling stepper motors nowadays is the

Microstepping. In this mode, we provide variable controlled current to the coils in the

form of a sin wave. This will provide smooth motion of the rotor, decrease the stress of

the parts and increase the accuracy of the stepper motor.
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Figure 4.8: Micro step

Another way of increasing the resolution of the stepper motor is by increasing the

numbers of the poles of the rotor and the numbers of the pole of the stator.

Figure 4.9: Number of poles

Stepper motor consumes high current and hence, we will need to use a driver IC

like the ULN2003 in order to control the motor with a microcontroller like the AVR.

Known for its high current and high voltage capacity, the ULN2003 gives a higher current

gain than a single transistor and enables the low voltage and low current output of a

microcontroller to drive a higher current stepper motor. For example, a stepper motor

that needs 9V and 300mA to operate cannot be powered by an AVR. Hence, we connect

this IC to the source for enough current and voltage for the motor. If you have to power

anything more than 5V and 40mA, the ULN2003 driver board should be used.
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Figure 4.10: Stepper motor with ULN2003 connection

The ULN2003 is one of the most common motor driver ICs that houses an array of 7

Darlington transistor pairs, each capable of driving loads up to 500mA and 50V. Basically,

a Darlington pair is a pair of transistors, where the second transistor ampli�es the output

current of the �rst transistor. The ULN2003 IC is needed to drive the motor with an

AVR.

1. What happens if we change the polarity of the DC motor?

2. Draw H bridge control for DC motor. Explain how it works.

3. What is the optoisolator and how to use it to control the DC motor?

4. Draw the circuit with the AVR controller to control the DC motor direction.

5. What is the di�erence between the DC and Stepper motors?

6. Draw time diagram of Full step drive.

7. Why we use ULN2003 for controlling the Stepper motor?

8. What is the mean di�erence between AC and DC motors?

9. How we can change the rotation speed of the DC motor?

10. How can we control the stability of rotation speed?

32



CHAPTER 5

Microprocessors and Microcontrollers



Chapter 5. Microprocessors and Microcontrollers

Topic 5

Processor systems
Processor architecture

Microprocessors system

Microprocessors vs Microcontroller

Buses

Amicroprocessor is an electronic component that is used by a computer to do its work.

It is a Central Processing Unit on a single integrated circuit chip containing millions of

very small components including transistors, resistors, and diodes that work together [6].

The microprocessor is a multipurpose, clock driven, register based, digital integrated

circuit that accepts binary data as input, processes it according to instructions stored in

its memory and provides results (also in binary form) as output. Microprocessors contain

both combinational logic and sequential digital logic. Microprocessors operate on numbers

and symbols represented in the binary number system.

5.1 Processor Architecture

A processor is the brain of a computer which basically consists of Arithmetical and

Logical Unit (ALU), Control Unit and Register Array.

Figure 5.1: Microprocessor
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5.2 General Purpose Register

In computer architecture, a processor register is a quickly accessible location available

to a computer's central processing unit (CPU). Registers usually consist of a small amount

of fast storage, although some registers have speci�c hardware functions, and maybe read-

only or write-only. Registers are typically addressed by mechanisms other than the main

memory. Processor registers are normally at the top of the memory hierarchy and provide

the fastest way to access data.

Registers are normally measured by the number of bits they can hold, for example, an

"8-bit register", "32-bit register" or a "64-bit register" or even more. A processor often

contains several kinds of registers, which can be classi�ed according to their content or

instructions that operate on them:

• User-accessible registers can be read or written by machine instructions. The most

common division of user-accessible registers is into data registers and address registers.

• Data registers can hold numeric data values such as integer and, in some architectures,

�oating-point values, as well as characters, small bit arrays, and other data. In some older

and low-end CPUs, a special data register, known as the accumulator, is used implicitly

for many operations.

• Address registers hold addresses and are used by instructions that indirectly access

primary memory. Some processors contain registers that may only be used to hold an

address or only to hold numeric values (in some cases used as an index register whose

value is added as an o�set from some address), others allow registers to hold either kind

of quantity. A wide variety of possible addressing modes, used to specify the e�ective

address of an operand, exist.

The stack pointer is used to manage the run-time stack. Rarely, other data stacks are

addressed by dedicated address registers, see stack machine.

• General-purpose registers (GPRs) can store both data and addresses, i.e., they are com-

bined data/address registers and rarely the register �le is uni�ed to include �oating point

as well.

• Status registers hold truth values often used to determine whether some instruction

should or should not be executed.

• Floating-point registers (FPRs) store �oating-point numbers in many architectures.

• Constant registers hold read-only values such as zero, one, or pi.

• Vector registers hold data for vector processing done by SIMD instructions (Single In-

struction, Multiple Data).

• Special-purpose registers (SPRs) hold program state, they usually include the program

counter, also called the instruction pointer, and the status register, the program counter
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and status register might be combined in a program status word (PSW) register. The

aforementioned stack pointer is sometimes also included in this group. Embedded micro-

processors can also have registers corresponding to specialized hardware elements.

• In some architectures, model-speci�c registers (also called machine-speci�c registers)

store data and settings related to the processor itself. Because their meanings are at-

tached to the design of a speci�c processor, they cannot be expected to remain standard

between processor generations.

• Internal registers � registers not accessible by instructions, used internally for processor

operations.

• Instruction register, holding the instruction currently being executed.

5.3 Arithmetic Logic Unit

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and

logic operations. It represents the fundamental building block of the central processing

unit (CPU) of a computer. Examples of arithmetic operations are addition, subtraction,

multiplication, and division. Examples of logic operations are comparisons of values such

as NOT, AND, and OR.

5.4 Control Unit

The control unit (CU) is a component of a computer's central processing unit (CPU)

that directs the operation of the processor. It tells the computer's memory, arithmetic

and logic unit and input and output devices how to respond to the instructions that have

been sent to the processor. It directs the operation of the other units by providing timing

and control signals. Most computer resources are managed by the CU. It directs the �ow

of data between the CPU and the other devices.
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5.5 Microprocessors system

An alone microprocessor cannot do anything. So it needs to corporate with other devices

to perform some job. The purpose of a microprocessor is to perform mathematical calcu-

lations (computations) in an arti�cial manner. The combination of a microprocessor with

memory and peripherals results in a system that is designed to be useful for controlling

other devices or for performing computations quickly. All microprocessor systems perform

the same essential functions, that is, data or signal input, storage, processing, and output.

Figure 5.2: Processor system

5.6 Buses

A bus is a group of conducting wires which carries information, all the peripherals are

connected to microprocessor through Bus. There are three types of buses.

• Address bus
It is a group of conducting wires which carry address only. The address bus is unidirec-

tional because data �ow in one direction, from the microprocessor to memory or from the

microprocessor to Input/Output devices. The Length of the address bus determines the

amount of memory a system can address. Such as a system with a 32-bit address bus can

address 232 memory locations. If each memory location holds one byte, the addressable

memory space is 4 GB.
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• Data bus
It is a group of conducting wires which carry Data only. The data bus is bidirectional

because of data �ow in both directions, from the microprocessor to memory or Input/Out-

put devices and from memory or Input/Output devices to microprocessors. The width of

the data bus is directly related to the largest number that the bus can carry, such as an

8-bit bus can represent 2 to the power of 8 unique values, this equates to the number 0

to 255. A 16-bit bus can carry 0 to 65535.

• Control bus
It is a group of conducting wires, which is used to generate timing and control signals to

control all the associated peripherals, the microprocessor uses control bus to process data

that is what to do with the selected memory location. Some control signals are:

• Memory read

• Memory write

• I/O read

• I/O write

• Opcode fetch
If one line of control bus may be the read/write line. If the wire is low (no electricity

�owing) then the memory is read, if the wire is high (electricity is �owing) then the

memory is written.

5.7 Microcontroller internal structure

A microcontroller is a computer system on a chip that does a job. It contains an

integrated processor, memory, and programmable Input/Output peripherals, which are

used to interact with things connected to the chip. A microcontroller is di�erent than a

microprocessor, which only contains a CPU.

Figure 5.3: Microcontroller
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The core elements of a microcontroller are:

• The processor (CPU) - A processor can be thought of as the brain of the device. It

processes and responds to various instructions that direct the microcontroller's function.

This involves performing basic arithmetic, logic and I/O operations. It also performs data

transfer operations, which communicate commands to other components in the larger

embedded system.

•Memory - A microcontroller's memory is used to store the data that the processor

receives and uses to respond to instructions that it's been programmed to carry out. A

microcontroller has two main memory types:

1. Program memory, which stores long-term information about the instructions

that the CPU carries out. Program memory is non-volatile memory, meaning it holds

information over time without needing a power source.

2. Data memory, which is required for temporary data storage while the instructions

are being executed. Data memory is volatile, meaning the data it holds is temporary and

is only maintained if the device is connected to a power source.

• I/O peripherals - The input and output devices are the interface for the processor

to the outside world. The input ports receive information and send it to the processor

in the form of binary data. The processor receives that data and sends the necessary

instructions to output devices that execute tasks external to the microcontroller.

Microprocessor Microcontroller
It is a central processing unit on a single
silicon-based integrated chip.

It is a byproduct of the development of
microprocessor with a CPU along with
other peripherals.

It has no RAM, ROM, IO units, Timers
and other peripherals on the chip.

It has a CPU along with RAM, ROM,
and other peripherals embedded on a
single chip.

It is the heart of the computer system. It is the brains of the computer system.
It uses an external bus to interface to
RAM, ROM, IO pins, and other periph-
erals

It used an internal controlling bus
which is not available to the board de-
signer

Microprocessor based systems can run
at very high speed because of the tech-
nology involved.

Microcontroller based systems run up
to 200MHz or more depending on the
architecture.

It's used for general purpose applica-
tions which are able to handle loads of
data

It's used for application speci�c sys-
tems.

It's complex and expensive with large
number of instructions to process.

It's simple and inexpensive with less
number of instructions to process.
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1. What are the main components in the microprocessor?

2. What is the main di�erence between microprocessor and processor systems?

3. What kind of buses in the processor system uses?

4. Draw a block diagram of the processor system.

5. What is the main di�erence between microprocessor and microcontroller?

6. If the address bus can access 4GB memory, how many bits on this bus?

7. If the data bus has 16 bit how many kinds of data can it send?

8. Explain how to work ALU?

9. What is the main di�erence between register and memory?

10. What is the main di�erence between data memory and program memory?
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Topic 6

Programming in C
Assembly language vs C

Variable types and sizes

Program �ow control

Functions

Microcontrollers have traditionally been programmed using the assembly language [5,

7]. This language consists of various mnemonics which describe the instructions of the

target microcontroller. An assembly language is unique to a microcontroller and cannot

be used for any other type of microcontroller. Although the assembly language is very

fast, it has some major disadvantages. Perhaps the most important of these is that

the assembly language can become very complex and di�cult to maintain. It is usually a

very time-consuming task to develop large projects using the assembly language. Program

debugging and testing are also considerably more complex, requiring more e�ort and more

time.

Microcontrollers can also be programmed using high-level languages. C programming is

less time consuming and much easier to write, but the hex �le size produced is much

larger than if we used Assembly language.

The following are some of the major reasons for writing programs in C instead of

Assembly:

• It is easier and less time consuming to write in C than in Assembly.

• C is easier to modify and update.

• You can use code available in function libraries,

• C code is portable to other microcontrollers with little or no modi�cation.
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6.1 Variables

One of the goals of AVR programmers is to create smaller hex �les, so it is worthwhile to

re-examine C data types. In other words, a good understanding of C data types for the

AVR can help programmers to create smaller hex �les. In this section we focus on the

speci�c C data types that are most common and widely used in MR C compilers, Table

7-1 shows data types and sizes, but these may vary from one compiler to another. The

compiler supports the following basic data types:

• bit
• unsigned char

• signed char

• unsigned int

• signed int

• long
• unsigned long

• �oat
• double

Data Type Size in Bits Data Range
unsigned char 8-bit 0 to 255
char 8-bit -128 to +128
unsigned int 16-bit 0 to 65535
int 6-bit -32768 to +32767
unsigned long 32-bit 0 to 4294967295
long 32-bit -2147483648 to +2147483648
�oat 32-bit ± 1.175 e-38 to ± 3.402e38
double 32-bit ± 1.175 e-38 to ± 3.402e38

Function signature Description of
int atoi(char *str) Converts the string str to integer.
long atol Converts the string str to long.
void itoa(int n, char *str) Converts the integer n to characters in string str.
void ltoa (int n, char *str) Converts the long n to characters in string str.
�oat atof (char *str) Converts the characters from string str to �oat
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6.2 Program �ow Control

The AVR language supports the following �ow control commands:

• if-else
• for
• while
• do
• goto
• break
• continue
• switch�case

6.2.1 If �Else statement

This statement is used to decide whether or not to execute a single statement or a group

of statements depending upon the result of a test. There are several formats for this

statement, the simplest one is when there is only one statement:

1 if (condition) statement;

The following test decides whether a student has passed an exam with a pass mark of

45 and if so, character `P' is assigned to the variable student:

1 if (result > 45) student = 'P';

In the multiple-statement version of the if statement, the statements are enclosed in

curly brackets as in the following format:

1 if (condition)

2 {

3 statement;

4 statement;

5 ...

6 statement;

7 statement;

8 }

For example,

1 if (temperature > 20)

2 { flag = 1; pressure = 20; hot = 1; }

The if statement can be used together with the else statement when it is required to

execute an alternative set of statements when a condition is not satis�ed. The general

format is:
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1 if(condition)

2 {

3 statement;

4 statement;

5 ...

6 statement;

7 statement;

8 }

9 else

10 {

11 statement;

12 statement;

13 ...

14 statement;

15 statement;

16 }

In the following example, if the result is greater than 50 the variable student is assigned

character `P' and count is incremented by 1. Otherwise (i.e. if the result is less than or

equal to 50) the variable student is assigned character `F' and count is decremented by 1:

1 if(result > 50)

2 {

3 student = 'P';

4 count++;

5 }

6 else

7 {

8 student = 'F';

9 count--;

10 }

When using the equals sign as a condition, double equals signs `==' should be used as in

the following example:

1 if(total == 100)

2 x++;

3 else

4 y++;
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6.2.2 Switch Case

This is another form of �ow control where statements are executed depending on a multi-

way decision. The switch− case statement can only be used in certain cases where:

• only one variable is tested and all branches depend on the value of that variable;

• each possible value of the variable can control a single branch.

The general format of the switch − case statement is as follows. Here, a variable

number is tested. If a number is equal to n1, statements between n1 and n2 are executed.

If number is equal to n2, statements between n2 and n3 are executed, and soon. If number

is not equal to any of the condition then the statements after the default case is executed.

Notice that each block of statement is terminated with a break statement so that the

program jumps out of the switch− case block.

1 switch (number)

2 {

3 case n1:

4 statement;

5 ...

6 statement;

7 break;

8 case n2:

9 statement;

10 ...

11 statement;

12 break;

13 case n3:

14 statement;

15 ...

16 statement;

17 break;

18 default:

19 statement;

20 ...

21 statement;

22 break;

23 }
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In the following example, the variable no stores a hexadecimal number between A

and F and the switch − case statement is used to convert the hexadecimal number to a

decimal number in the variable:

1 switch (no)

2 {

3 case 'A':

4 deci = 65;

5 break;

6 case 'B':

7 deci = 66;

8 break;

9 case 'C':

10 deci = 67;

11 break;

12 case 'D':

13 deci = 68;

14 break;

15 case 'E':

16 deci = 69;

17 break;

18 case 'F':

19 deci = 70;

20 break;

21 }

6.2.3 For statement

The for statement is used to create loops in programs. The for loop works well where

the number of iterations of the loop is known before the loop is entered. The general

format of the for statement is:

1 for (initial; condition; increment)

2 {

3 statement;

4 statement;

5 }

The �rst parameter is the initial condition and the loop is executed with this initial

condition being true. The second is a test and the loop is terminated when this test

returns a false. The third is a statement that is executed every time the loop body is

completed. This is usually an increment of the loop counter. An example is given below

where the statements inside the loop are executed 10 times. The initial value of the
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variable i is zero and this variable is incremented by one every time the body of the loop

is executed. The loop is terminated when i become 10 (i.e. the loop is executed 10 times):

1 for (i = 0; i < 10; i++)

2 {

3 sum++;

4 total = total + sum;

5 }

The above code can also be written as follows, where the initial value of i is 1:

1 for (i = 1; i <= 10; i++)

2 {

3 sum++;

4 total = total + sum;

5 }

If there is only one statement to be executed, the for loop can be written as in the

following example:

1 for(i = 0; i < 10; i++)

2 count++;

It is possible to declare nested for loops where one loop can be inside another loop. An

example is given below where the inner loop is executed 5 times, and the outer loop is

executed 10 times:

1 for(i = 0; i < 10; i++)

2 {

3 cnt++;

4 for(j = 0; j < 5; j++)

5 {

6 sum++;

7 }

8 }

47



Chapter 6. Programming in C

6.2.4 While statement

The while loop repeats a statement until the condition at the beginning of the statement

becomes false. The general format of this statement is:

1 while (condition) statement;

or

1 while (condition)

2 {

3 statement;

4 statement;

5 ...

6 statement;

7 }

In the following example, the loop is executed 10 times:

1 i = 0;

2 while (i < 10)

3 {

4 cnt;

5 total = total + cnt;

6 i++;

7 }

Notice that the condition at the beginning of the loop should become true for the loop to

terminate, otherwise we get an in�nite loop as shown in the following example:

1 i = 0;

2 while (i < 10)

3 {

4 cnt;

5 total = total + cnt;

6 }

Here the variable i is always less than 10 and the loop never terminates.
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6.2.5 Do statement

This is another form of the while statement where the condition to terminate the loop

is tested at the end of the loop and, as a result, the loop is executed at least once. The

condition to terminate the loop should be satis�ed inside the loop, otherwise, we get an

in�nite loop. The general format of this statement is:

1 do

2 {

3 statement;

4 statement;

5 ...

6 statement;

7 }

8 while (condition);

An example is given below where the loop is executed �ve times:

1 j = 0;

2 do

3 {

4 cnt++;

5 j++;

6 }

7 while (j < 5);

6.2.6 Break statement

We have seen the use of this statement in the switch−case blocks to terminate the block.

Another use of the break statement is to terminate a loop before a condition is met. An

example is given below where the loop is terminated when the variable j becomes 10:

1 while(i < 100)

2 {

3 total++;

4 sum = sum + total;

5 if (j = 10) break;

6 }

6.2.7 Continue statement

The continue statement is similar to the break statement but is used less frequently. The

continue statement causes a jump to the loop control statement. In a while loop, control

jumps to the condition statement, and in a for loop, control jumps to the beginning of

the loop.
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6.3 Functions

Almost all programming languages support functions or some similar concepts. Some

languages call them subroutines, some call them procedures. Some languages dis-

tinguish between functions that return variables and those which do not. In almost all

programming languages functions are of two kinds: user functions and built-in func-

tions. User functions are developed by programmers, while built-in functions are usually

general purpose routines provided with the compiler. Functions are independent program

codes and are usually used to return values to the main calling programs.

These functions are developed by the programmer. Every function has a name and op-

tional arguments, and a pair of brackets must be used after the function name in order

to declare the arguments. The function performs the required operation and can return

values to the main calling program if required. Not all functions return values. Func-

tions whose names start with the keyword void do not return any values, as shown in the

following example:

1 void led on()

2 {

3 led = 1;

4 }

The return value of a function is included inside a return statement as shown below.

This function is named sum, has two integer arguments named a and b, and the function

returns an integer:

1 int sum (int a, int b)

2 {

3 int z;

4 z = a + b;

5 return (z);

6 }

A function is called in the main program by specifying the name of the function and

assigning it to a variable. In the following example, the variable w in the main program

is assigned the value 7:

1 w = sum (3, 4)

It is important to realize that the variables used inside a function are local to that func-

tion and do not have any relationship to any variables used outside the function with the

same names.
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1. What is the di�erence between Assembler and C languages?

2. Fill the bits.

a. unsigned char - ...

b. int - ...

c. long - ...

d. �oat - ...

e. double - ...

3. What is the function that converts an integer to char?

4. Write code whether a student has passed an exam using if statement.

5. The toaster is a closed-loop system that uses a thermistor on the feedback loop. Draw

a program algorithm of that system.

6. Write code that selects a number using switch case.

7. Write code that blinks light diode 100 times using for statement.

8. Write code that blinks light diode 100 times using while statement.

9. Write program function of function y = 5 ∗ x.
10. What is the di�erence between while and do while?
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Topic 7

AVR controller
Atmega32 controller

Memory organization

AVR internal devices

Programming registers

AVR features The AVR is an 8-bit RISC single-chip microcontroller with Harvard ar-

chitecture that comes with some standard features such as on-chip program ROM, data

RAM, data EEPROM, timers and I/O ports [5, 8, 9, 10, 11, 12, 13]. Most AVRs have

some additional features like ADC, PWM, and di�erent kinds of serial interfaces such as

USART, SPI, I2C (TWI), CAN, USB, and so on.

Figure 7.1: AVR microcontroller
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7.1 Memory organization

The ROM is used to store program code, the RAM space is for data storage. The AVR

has a maximum of 64K bytes of data RAM space. Not all of the family members come

with that much RAM.

The data RAM space has three components: general-purpose registers, I/O memory,

and internal SRAM. There are 32 general-purpose registers in all of the AVRs, but the

SRAM's size and the I/O memory's size varies from chip to chip. In AVR, we also have

a small amount of EEPROM to store critical data that does not need to be changed very

often.

Part Num. Code ROM Data RAM Data EEPROM IO pinc ADC Timers
ATmega8 8K 1K 0.5K 23 8 3
ATmega16 16K 1K 0.5K 32 8 3
ATmega32 32K 2K 1K 32 8 3
ATmega64 64K 4K 2K 54 8 4
ATmega1280 128K 8K 4K 86 16 6

In AVR there are 32 general purpose registers. They are R0-R31 and are located in

the lowest location of the memory address. All of these registers are 8 bits. The general

purpose registers in AVR are the same as the accumulator in other microprocessors. They

can be used by all arithmetic and logic instructions. In AVR microcontrollers there are

two kinds of memory space: code memory space and data memory space. Our

program is stored in code memory space, whereas the data memory stores data. The data

memory is composed of three parts: GPRs (general purpose registers), I/O memory, and

internal data SRAM.
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Figure 7.2: AVR SRAM

The GPRs use 32 bytes of data memory space. They always take the address location

0x00-0x1F in the data memory space, regardless of the AVR chip number. The I/O mem-

ory is dedicated to speci�c functions such as status register, timers, serial communication,

I/O ports, ADC, and so on. The function of each I/O memory location is �xed by the

CPU designer at the time of design because it is used for control of the microcontroller

or peripherals.

The AVR I/O memory is made of 8-bit registers. The number of locations in the data

memory set aside for I/O memory depends on the pin numbers and peripheral functions

supported by that chip, although the number can vary from chip to chip even among

members of the same family. However, all of the AVRs have at least 64 bytes of I/O

memory locations. This 64-byte section is called standard I/O memory. In AVRs with

more than 32 I/O pins (e.g., ATmega64, ATmega128, and ATmega256) there is also an

extended I/O memory, which contains the registers for controlling the extra ports and the

extra peripherals. In other microcontrollers, the I/O registers are called SFRs (special

function registers) since each one is dedicated to a speci�c function. In contrast to SFRs,

the GPRs do not have any speci�c function and are used for storing general data.
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7.2 Parallel Ports

In the AVR family, there are many ports for I/O operations, depending on which family

member you choose. For example, ATmega32 has a 40-pin chip. A total of 32 pins are

set aside for the four ports PORTA, PORTB, PORTC, and PORTD. The rest of the pins

are designated as VCC, GND, XTAL1, XTAL2, RESET, AREF, AGND, and AVCC.

Figure 7.3: Atmega32

All ports have 8 pins. Each port has three I/O registers associated with it. They

are designated as PORTx, DDRx, and PINx. For example, for Port B we have PORTB,

DDRB, and PINB. Notice that DDR stands for Data Direction Register, and PIN stands

for Port Input pins. Also, notice that each of the I/O registers is 8 bits wide, and each

port has a maximum of 8 pins, therefore each bit of the I/O registers a�ects one of the

pins.
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Figure 7.4: Port register

Each of the ports A - D in the ATmega32 can be used for input or output. The DDRx

I/O register is used solely for the purpose of making a given port an input or output port.

For example, to make a port an output, we write 1s to the DDRx register. In other words,

to output data to all of the pins of the Port B, we must �rst put 0b11111111 into the

DDRB register to make all of the pin's output. To make a port an input port, we must

�rst put 0s into the DDRx register for that port, and then bring in (read) the data present

at the pins.

As an aid for remembering that the port is input when the DDR bits are 0s, imagine a

person who has 0 dollars. The person can only get money, not give it. Similarly, when

DDR contains 0s, the port gets data.

Notice that upon reset, all ports have the value 0x00 in their DDR registers. This means

that all ports are con�gured as an input. To read the data present at the pins, we should

read the PIN register. It must be noted that to bring data into CPU from pins we read

the contents of the PINx register, whereas to send data out to pins we use the PORTx

register.

There is a pull-up resistor for each of the AVR pins. If we put 1s into bits of the PORTx

register, the pull-up resistors are activated. In cases in which nothing is connected to the

pin or the connected devices have high impedance, the resistor pulls up the pin. If we put

0s into the bits of the PORTx register, the pull-up resistor is inactive.
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Figure 7.5: Port pull-up resister

The pins of the AVR microcontrollers can be in four di�erent states according to the

values of PORTx and DDRx.

PORTx \ DDRx. 0 1
0 Input and high impendance Out 0
1 Input and pull-up Out 1
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7.3 Timers and Counters

Many applications need to count an event or generate time delays. So, there are counter

registers in microcontrollers for this purpose. When we want to count an event, we

connect the external event source to the clock pin of the counter register. Then, when

an event occurs externally, the content of the counter is incremented, in this way, the

content of the counter represents how many times an event has occurred. When we want

to generate time delays, we connect the oscillator to the clock pin of the counter. So, when

the oscillator ticks, the content of the counter is incremented. As a result, the content

of the counter register represents how many ticks have occurred from the time we have

cleared the counter. Since the speed of the oscillator in a microcontroller is known, we

can calculate the tick period, and from the content of the counter register, we will know

how much time has elapsed.

Figure 7.6: Timer, counter

One way to generate a time delay is to clear the counter at the start time and wait

until the counter reaches a certain number. For example, consider a microcontroller with

an oscillator with a frequency of 1 MHz, in the microcontroller, the content of the counter

register increments once per microsecond. So, if we want a time delay of 100 microseconds,

we should clear the counter and wait until it becomes equal to 100.

In the microcontrollers, there is a �ag for each of the counters. The �ag is set when the

counter over�ows, and it is cleared by software.

The second method to generate a time delay is to load the counter register and wait until

the counter over�ows and the �ag is set.

For example, in a microcontroller with a frequency of 1 MHz, with an 8-bit counter

register, if we want a time delay of 3 microseconds, we can load the counter register with

0xFD and wait until the �ag is set after 3 ticks. After the �rst tick, the content of the

register increments to 0xFE, after the second tick, it becomes 0xFF, and after the third

tick, it over�ows (the content of the register becomes 0x00) and the �ag is set.

In ATmega32, there are three timers: Timer0, Timer1, and Timer2. Timer0 and Timer2
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are 8-bit, while Timer1 is 16-bit. In this chapter we cover Timer0 as an 8-bit timer. If

you learn to use the timers of ATmega32, you can easily use the timers of other AVRs.

Every timer needs a clock pulse to tick. The clock source can be internal or external. If

we use the internal clock source, then the frequency of the crystal oscillator is fed into

the timer. Therefore, it is used for time delay generation and consequently is called a

timer. By choosing the external clock option, we feed pulses through one of the AVR's

pins. This is called a counter.

Figure 7.7: Timer counter registers

AVR, for each of the timers, there is a TCNTn (timer/counter) register. That means

in ATmega32 we have TCNT0, TCNTI, and TCNT2. The TCNTn register is a counter.

Upon reset, the TCNTn contains zero. It counts up with each pulse.

The contents of the timers/counters can be accessed using the TCNTn. You can load a

value into the TCNTn register or read its value.

Each timer has a TOVn (Timer Over�ow) �ag, as well. When a timer over�ows, its TOVn

�ag will be set. Each timer also has the TCCRn (timer/counter control register) register

for setting modes of operation.

For example, you can specify Timer0 to work as a timer or a counter by loading proper

values into the TCCR0. Each timer also has an OCRn (Output Compare Register)

register. The content of the OCRn is compared with the content of the TCNTn. When

they are equal the OCFn (Output Compare Flag) �ag will be set. The timer registers are

located in the I/O register memory.

TCNT0 register

D7 D6 D5 D4 D3 D2 D1 D0
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TCCR0 register

FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00

FOC0 -Force compare match. This is a write-only bit, which can be used while generat-

ing a wave. Writing 1 to it causes the wave generator to act as if a compare match had

occurred.

WGM00, WGM01 - Timer0 mode selector bits

0 0 - Normal

0 1 - Clear Timer on Compare Match

1 0 - PWM, phase correct

1 1 - Fast PWM

COM01, COM00 - Compare Output Mode

0 0 - Normal port operation, OC0 disconnected

0 1 - Toggle OC0 on compare match

1 0 - Clear OC0 on compare match

1 1 - Ser OC0 on compare match

CS02, CS01, CS00 - Timer0 clock selector

0 0 0 - No clock source, T/C stopped

0 0 1 - Clk, No prescaling

0 1 0 - Clk/8

0 1 1 - Clk/64

1 0 0 - Clk/256

1 0 1 - Clk/1024

1 1 0 - External clk source on T0 pin. Clk falling edge

1 1 1 - External clk source on T0 pin. Clk rising edge

The TIFR register contains the �ags of di�erent timers.

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0

TOV0 - Timer0 over�ow �ag bit. 0- did not over�ow, 1- has over�ow

OCF0 - Timer0 output compare �ag bit. 0 - compare match didn't occur, 1 compare

match occur

TOV1 - Timer1 overlow �ag bit

OCF1B - Timer1 output compare B match �ag

OCF1A - Timer1 output compare A match �ag

ICF1 - Input capture �ag
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TOV2 - Timer2 over�ow �ag

OCF2 - Timer2 output compare match �ag

Timer0 can work in four di�erent modes: Normal, phase correct PWM, CTC, and

Fast PWM. The WGM01 and WGM00 bits are used to choose one of them.

InNormal mode, the content of the timer/counter increments with each clock. It counts

up until it reaches its max of 0xFF. When it rolls over from 0xFF to 0x00, it sets high a

�ag bit called TOV0 (Timer Over�ow). This timer �ag can be monitored.

Figure 7.8: Timer normal mode

7.3.1 Pulse Width Modulation

We learned how to use AVR timers to generate delay and count external events. AVR

timers have other features as well. They can be used for generating di�erent square waves

or capturing events and measuring the frequency and duty cycle of waves.

For each timer there is, at least, an OCRn register (like OCR0 for Timer0). The value of

this register is constantly compared with the TCNTn register, and when a match occurs,

the OCFn �ag will be set to high. In each AVR timer there is a waveform generator. The

waveform generator can generate waves on the OCn pin.

The WGMn and COMn bits of the TCCR register determines how the waveform generator

works. When the TCNTn register reaches Top or Bottom or compare match occurs, the

waveform generator is informed. Then the waveform generator changes the state of the

OC0 pin according to the mode of the timer (WGM01:00 bits of the TCCR0 register)

and the COM01 (Compare Output Mode) and COM00 bits. In ATmega32, OC0 is the

alternative function of PB3. In other words, the PB3 functions as an I/O port when both

COM01 and COM00 are zero. Otherwise, the pin acts as a wave generator pin controlled

by a waveform generator. Since the DDR register represents the direction of the I/O pin,

we should set the OC0 pin as an output pin when we want to use it for generating waves.
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Figure 7.9: Wave generator

Now we discuss the PWM feature of the AVR. The ATmega32 comes with three timers,

which can be used as wave generators. PWM is so widely used in DC motor control that

some microcontrollers come with the PWM circuitry embedded in the chip.

In such microcontrollers all we have to do is load the proper registers with the values

of the high and low portions of the desired pulse, and the rest is taken care of by the

microcontroller. This allows the microcontroller to do other things.

The ability to control the speed of the DC motor using PWM is one reason that DC

motors are often preferred over AC motors. For a given �xed load we can maintain a

steady speed by using a method called pulse width modulation (PWM). By changing

(modulating) the width of the pulse applied to the DC motor we can increase or decrease

the amount of power provided to the motor, thereby increasing or decreasing the motor

speed. Notice that, although the voltage has a �xed amplitude, it has a variable duty

cycle. That means the wider the pulse, the higher the speed.

Figure 7.10: PWM signal
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In the Fast PWM mode, the counter counts as it does in the Normal mode. After

the timer is started, it starts to count up.

It counts up until it reaches its limit of 0xFF. When it rolls over from 0xFF to 00, it

sets HIGH the TOVO �ag. The Figure7.11 shows the reaction of the waveform generator

when compare match occurs while the timer is in Fast PWM mode.

Figure 7.11: PWM mode

In Fast PWM mode, the timer counts from 0 to top (0xFF in 8-bit counters) and then

rolls over. So, the frequency of the generated wave is 1/256 of the frequency of timer

clock. The frequency of the timer clock can be selected using the prescaler. So, in 8-bit

timers the frequency of the generated wave can be calculated as follows (N is determined

by the prescaler):

Fgenerated.wave =
Ftimer.clock

256
(7.1)

Ftimer.clock =
Foscillator

N
(7.2)

Fgenerated.wave =
Foscillator

256 ∗N
(7.3)
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7.4 Interrupts

A single microcontroller can serve several devices. There are two methods by which

devices receive service from the microcontroller: interrupts or polling. In the interrupt

method, whenever any device needs the microcontroller's service, the device noti�es it by

sending an interrupt signal. Upon receiving an interrupt signal, the microcontroller stops

whatever it is doing and serves the device. The program associated with the interrupt is

called the interrupt service routine (ISR) or interrupt handler.

In polling, the microcontroller continuously monitors the status of a given device, when

the status condition is met, it performs the service. After that, it moves on to monitor

the next device until each one is serviced. Although polling can monitor the status of

several devices and serve each of them as certain conditions are met, it is not an e�cient

use of the microcontroller. The advantage of interrupts is that the microcontroller can

serve many devices (not all at the same time, of course), each device can get the attention

of the microcontroller based on the priority assigned to it. The polling method cannot

assign priority because it checks all devices in a round-robin fashion. More importantly,

in the interrupt method the microcontroller can also ignore (mask) a device request for

service. This also is not possible with the polling method.

The most important reason that the interrupt method is preferable is that the polling

method wastes much of the microcontroller's time by polling devices that do not need

service. So interrupts are used to avoid tying down the microcontroller. That is a waste

of microcontroller time that could have been used to perform some useful tasks.

In the case of the timer, if we use the interrupt method, the microcontroller can go about

doing other tasks, and when the TOV0 �ag is raised, the timer will interrupt the micro-

controller in whatever it is doing. For every interrupt, there must be an interrupt service

routine (ISR) or interrupt handler. When an interrupt is invoked, the microcontroller

runs the interrupt service routine. Generally, in most microprocessors, for every inter-

rupt, there is a �xed location in memory that holds the address of its ISR. The group

of memory locations set aside to hold the addresses of ISRs is called the interrupt vector

table.
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Interrupt ROM Location (Hex)
Reset 0000
External Interrupt request 0 0002
External Interrupt request 1 0004
External Interrupt request 2 0006
Timer/Counter2 Compare Match 0008
Timer/Counter2 Over�ow 000A
Timer/Counter1 Capture Event 000C
Timer/Counter1 Compare Match A 000E
Timer/Counter1 Compare Match B 0010
Timer/Counter1 Over�ow 0012
Timer/Counter0 Compare Match 0014
Timer/Counter0 Over�ow 0016
SPI Transfer complete 0018
USART, Receive Complete 001A
USART, Data Register Empty 001C
USART, Transmit Complete 001E
ADC Conversion Complete 0020
EEPROM Ready 0022
Analog Comparator 0024
I2C 0026
Store Program Memory Ready 0028

Upon activation of an interrupt, the microcontroller goes through the following steps:

1. It �nishes the instruction it is currently executing and saves the address of the next

instruction (program counter) on the stack.

2. It jumps to a �xed location in memory called the interrupt vector table. The

interrupt vector table directs the microcontroller to the address of the interrupt service

routine (ISR).

3. The microcontroller starts to execute the interrupt service subroutine until it reaches

the last instruction of the subroutine, which is RETI (return from interrupt).

4. Upon executing the RETI instruction, the microcontroller returns to the place

where it was interrupted. First, it gets the program counter (PC) address from the stack

by popping the top bytes of the stack into the PC. Then it starts to execute from that

address.
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Notice from Step 4 the critical role of the stack. For this reason, we must be careful in

manipulating the stack contents in the ISR. Speci�cally, in the ISR, just as in any CALL

subroutine, the number of pushes and pops must be equal. Upon reset, all interrupts are

disabled (masked), meaning that none will be responded to by the microcontroller if they

are activated. The interrupts must be enabled (unmasked) by software in order for the

microcontroller to respond to them. The D7 bit of the SREG (Status Register) register is

responsible for enabling and disabling the interrupts globally. The I bit makes the job of

disabling all the interrupts easy. Bit D7 (I) of the SREG register must be set to HIGH to

allow the interrupts to happen. This is done with the "SEI" (Set Interrupt) instruction.

There are three external hardware interrupts in the ATmega32: INT0, INT1, and

INT2. They are located on pins PD2, PD3, and PB2, respectively. As we saw in Table

10-1, the interrupt vector table locations 0x02, 0x04, and 0x06 are set aside for INT0,

INT1, and INT2, respectively. The hardware interrupts must be enabled before they can

take e�ect. This is done using the INTx bit located in the GICR register.

INT1 INT0 INT2 - - - IVSEL IVCE

INT0 - External Interrupt Request 0 Enable =1

INT1 - External Interrupt Request 1 Enable =1

INT2 - External Interrupt Request 2 Enable =1

The INT0 is a low-level-triggered interrupt by default, which means, when a low signal

is applied to pin PD2 (PORTD.2), the controller will be interrupted and jump to location

0x0002 in the vector table to service the ISR.
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7.5 Analog to Digital Convertor

Analog-to-digital converters are among the most widely used devices for data acquisi-

tion. Digital computers use binary (discrete) values, but in the physical world everything

is analog (continuous). Temperature, pressure (wind or liquid), humidity, and velocity

are a few examples of physical quantities that we deal with every day. A physical quan-

tity is converted to electrical (voltage, current) signals using a device called a transducer.

Transducers are also referred to as sensors. Sensors for temperature, velocity, pressure,

light, and many other natural quantities produce an output that is voltage (or current).

Therefore, we need an analog-to-digital converter to translate the analog signals to digital

numbers so that the microcontroller can read and process them.

The ADC has an n-bit resolution, where n can be 8, 10, 12, 16, or even 24 bits.

Higher-resolution ADCs provide a smaller step size, where the step size is the smallest

change that can be discerned by an ADC. Although the resolution of an ADC chip is

decided at the time of its design and cannot be changed, we can control the step size with

the help of what is called Vref. Vref is an input voltage used for the reference voltage.

The voltage connected to this pin, along with the resolution of the ADC chip, dictates

the step size. For an 8-bit ADC, the step size is Vref/256 because it is an 8-bit ADC, and

2 to the power of 8 gives us 256 steps. For example, if the analog input range needs to

be 0 to 4 volts, Vref is connected to 4 volts.

That gives 4 V/256 = 15.62 mV for the step size of an 8-bit ADC.

In addition to resolution, the conversion time is another major factor in judging

an ADC. Conversion time is de�ned as the time it takes the ADC to convert the analog

input to a digital (binary) number. The conversion time is dictated by the clock source

connected to the ADC in addition to the method used for data conversion and technology

used in the fabrication of the ADC chip such as MOS or TTL technology.

The ADC peripheral of the ATmega32 has the following characteristics:

(a) It is a 10-bit ADC.

(b) It has 8 analog input channels, 7 di�erential input channels, and 2 di�erential

input channels with an optional gain of 10x and 200x.

(c) The converted output binary data is held by two special function registers called

ADCL (A/D Result Low) and ADCH (A/D Result High).

(d) Because the ADCH:ADCL registers give us 16 bits and the ADC data out is only

10 bits wide, 6 bits of the 16 are unused. We have the option of making either the upper

6 bits or the lower 6 bits unused.

(e) We have three options for Vref. Vref can be connected to AVCC (Analog Vcc),

internal 2.56V reference, or external AREF pin. The conversion time is dictated by the
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crystal frequency connected to the XTAL pins (Fosc) and ADPSO:2 bits.

Figure 7.12: ADC

In the AVR microcontroller, �ve major registers are associated with the ADC. They

are ADCH (high data), ADCL (low data), ADCSRA (ADC Control and Status Register),

ADMUX (ADC multiplexer selection register), and SPIOR (Special Function I/O Regis-

ter).

ADMUX register

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

REFS1 REFS0 Vref
0 0 AREF pin
0 1 AVCC pin
1 0 Reserved
1 1 Internal 2.56V

ADLAR - ADC Left Adjust Result

MUX4-0 Single ended Input
00000 ADC0
00001 ADC1
00010 ADC2
00011 ADC3
00100 ADC4
00101 ADC5
00110 ADC6
00111 ADC7
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ADCSRA register

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

ADEN - ADC Enable

ADSC - ADC Start Conversion

ADATE - ADC Auto Trigger Enable

ADIF - ADC Interrupt Flag

ADIE - ADC Interrupt Enable

ADPS2:0 ADC Prescaler Select Bits

ADPS2 ADPS1 ADPS0 ADC Clock
0 0 0 Reserved
0 0 1 CLK/2
0 1 0 CLK/4
0 1 1 CLK/8
1 0 0 CLK/16
1 0 1 CLK/32
1 1 0 CLK/64
1 1 1 CLK/128

7.6 Serial Communication Interfaces

Computers transfer data in two ways: parallel and serial. In parallel data transfers, often

eight or more lines (wire conductors) are used to transfer data to a device that is only

a few feet away. Devices that use parallel transfers include printers and IDE hard disks,

each uses cables with many wires. Although a lot of data can be transferred in a short

amount of time by using many wires in parallel, the distance cannot be great. To transfer

to a device located many meters away, the serial method is used.

In serial communication, the data is sent one bit at a time, in contrast to parallel com-

munication, in which the data is sent a byte or more at a time. The AVR has serial

communication capability built into it, thereby making possible fast data transfer using

only a few wires. For these reasons, serial communication is used for transferring data

between two systems located at distances of hundreds of feet to millions of miles apart.

In data transmission, if the data can be both transmitted and received, it is a duplex

transmission. This is in contrast to simplex transmissions such as with printers, in which

the computer only sends data. Duplex transmissions can be half or full duplex, depending

on whether or not the data transfer can be simultaneous. If data is transmitted one way
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at a time, it is referred to as half-duplex. If the data can go both ways at the same

time, it is full-duplex. Of course, full-duplex requires two wire conductors for the data

lines (in addition to the signal ground), one for transmission and one for a reception, in

order to transfer and receive data simultaneously.

Figure 7.13: Serial connection

7.6.1 USART

Serial data communication uses two methods, asynchronous and synchronous. The

synchronous method transfers a block of data (characters) at a time, whereas the asyn-

chronous method transfers a single byte at a time. These chips are commonly referred to as

UART (universal asynchronous receiver-transmitter) and USART (Universal Aynchronous-

Asynchronous Receiver-Transmitter). The AVR chip has a built-in USART. In the asyn-

chronous method, each character is placed between start and stop bits. This is called

framing. In data framing for asynchronous communications, the data, such as ASCII

characters, are packed between a start bit and a stop bit. The start bit is always one

bit, but the stop bit can be one or two bits. The start bit is always a 0 (low), and the

stop bit(s) is 1 (high). For example, the ASCII character "A" (8-bit binary 0100 0001)

is framed between the start bit and a single stop bit. Notice that the LSB is sent out

�rst. The transmission begins with a start bit (space) followed by D0, the LSB, then the

rest of the bits until the MSB (D7), and �nally, the one stop bit indicating the end of the

character "A".
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Figure 7.14: Asynchronous data transfer

In some systems, the parity bit of the character byte is included in the data frame

in order to maintain data integrity. This means that for each character (7- or 8-bit,

depending on the system) we have a single parity bit, in addition, to start and stop bits.

The parity bit is odd or even. In the case of an odd parity bit the number of 1s in the

data bits, including the parity bit, is odd. Similarly, in an even parity bit system the total

number of bits, including the parity bit, is even. For example, the ASCII character "A",

binary 0100 0001, has 0 for the even parity bit. UART chips allow programming of the

parity bit for odd, even, and no-parity options.

The rate of data transfer in serial data communication is stated in bps (bits per second).

Another widely used terminology for bps is the baud rate. The data transfer rate of a

given computer system depends on communication ports incorporated into that system.

For example, the early IBM PC/XT could transfer data at the rate of 100 to 9600 bps. In

recent years, however, Pentium-based PCs transfer data at rates as high as 56K. Notice

that in asynchronous serial data communication, the baud rate is generally limited to

115,200 bps. The ATmega32 has two pins that are used speci�cally for transferring and

receiving data serially. These two pins are called TX and RX and are part of the Port D

group (PD0 and PD1) of the 40-pin package. Pin 15 of the ATmega32 is assigned to TX

and pin 14 is designated as RX. These pins are TTL compatible.

In the AVR microcontroller, �ve registers are associated with the USART. They are UDR

(USART Data Register), UCSRA, UCSRB, UCSRC (USART Control Status Register),

and UBRR (USART Baud Rate Register). We examine each of them and show how they

are used in full-duplex serial data communication. The AVR transfers and receives data

serially at many di�erent baud rates. The baud rate in the AVR is programmable. This

is done with the help of the 8-bit register called UBRR. For a given crystal frequency, the

value loaded into the UBRR decides the baud rate.

The relation between the value loaded into UBBR and the Fosc (frequency of oscillator

connected to the XTALI and XTAL2 pins) is dictated by the following formula:

DesiredBaudRate =
Fosc

16(X + 1)
(7.4)
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where X is the value we load into the UBRR register.

X = (
Fosc

16(DesiredBaudRate)
)− 1 (7.5)

To get the X value for di�erent baud rates we can solve the equation as follows:

Baud Rate UBRR(Hex)
38400 C
19200 19
9600 33
4800 37
2400 CF
1200 19F

In the AVR, to provide full-duplex serial communication, there are two shift registers

referred to as Transmit Shift Register and Receive Shift Register. Each shift register has

a bu�er that is connected to it directly. These bu�ers are called Transmit Data Bu�er

Register and Receive Data Bu�er Register. The USART Transmit Data Bu�er Register

and USART Receive Data Bu�er Register share the same I/O address, which is called

USART Data Register or UDR. When you write data to UDR, it will be transferred to

the Transmit Data Bu�er Register (TXB), and when you read data from UDR, it will

return the contents of the Receive Data Bu�er Register (RXB).

Figure 7.15: UDR register

UCSRs are 8-bit control registers used for controlling serial communication in the

AVR. There are three USART Control Status Registers in the AVR. They are UCSRA,

UCSRB, and UCSRC.

UCSRA register

RXC TXC UDRE FE DOR PE U2X MPCM
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RXC - USART Receive Complete. This �ag bit is set when there are new data in the

receive bu�er that are not read yet.

TXC - USART Transmit Complete. This �ag bit is set when the entire frame in the

transmit shift register has been transmitted and there are no new data available in the

transmit data bu�er register.

UDRE - USART Data Register Empty. This �ag is set when the transmit data bu�er is

empty and it is ready to receive new data.

FE - Frame Error. This bit is set if a frame error has occurred in receiving the next

character in the receive bu�er.

DOR - Data OverRun. This bit is set if a data overrun is detected.

PE - Parity Error.

U2X - Double the USART Transmission Speed

MPCM - Multiprocessor Communication Mode

UCSRB register

RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

RXCIE - Receive Complete Interrupt Enable

TXCIE - Transmit Complete Interrupt Enable

UDRIE - USART Data Register Empty Interrupt Enable

RXEN - Receive Enable. To enable the USART receiver you should set this bit to one

TXEN - Transmit Enable. To enable the USART transmitter you should set this bit to

one

UCSZ2 -Character Size

RXB8 - Receive data bit 8

TXB8 - Transmit data bit 8

UCSRC register

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

URSEL - Register Select. This bit selects to access either UCSRC or the UBRRH register

UMSEL - USART Mode Select

0 - Asynchronous operation

1 - Synchronous operation

UPM1:0 - Parity Mode

00 = Disabled
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01 = Reserved

10 = Even Parity

11 = Odd Parity

USBS - Stop Bit Select

0 = 1 bit

1 = 2 bit

UCSZ1:0 - Character Size

UCPOL - Clock Polarity for synchronous mode

UCSZ2 UCSZ1 UCSZ0 Character Size
0 0 0 5
0 0 1 6
0 1 0 7
0 1 1 8
1 1 1 9

1. What kind of memories has ATmega32?

2. What is the di�erence between SRAM and EEPROM?

3. How work parallel port? How many parallel ports have ATmega32?

4. How many registers associated with each port? Name it.

5. What is pull up resister? How to control it using the software?

6. What is the main di�erence between timer and counter?

7. If TCCR0 =0x07 is it timer or counter?

8. Draw timer Normal mode time diagram.

9. Draw the PWM signal with 75 percent of the duty cycle.

10. What is the di�erence between polling and interrupt services?

11. Explain how is interrupt is executed.

12. Which of the following ADC sizes provides the best resolution?

a. 8-bit

b. 10-bit

c. 12-bit

d. they are all the same

13. Calculate the step size of 10-bit ADC if Vref is 5V

14. What is the di�erence between asynchronous and synchronous serial communications?

15. Draw a timing diagram of 0x79 asynchronous data transfer.
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Topic 8

PID controller
Proportional�Integral�Derivative

PID formulas

PID tunnig

Implementation PID controller

TheProportional�Integral�Derivative (PID) controller is often referred to as a 'three-

term' controller[1]. It is currently one of the most frequently used controllers in the process

industry. In a PID controller, the control variable is generated from a term proportional

to the error, a term which is the integral of the error, and a term which is the derivative

of the error.

• Proportional: the error is multiplied by a gain Kp. A very high gain may cause

instability, and a very low gain may cause the system to drift away.

• Integral: the integral of the error is taken and multiplied by a gain Ki. The gain

can be adjusted to drive the error to zero in the required time. A too high gain may cause

oscillations and a too low gain may result in a sluggish response.

• Derivative: The derivative of the error is multiplied by a gain Kd. A gain, if the

gain is too high the system may oscillate and if the gain is too low the response may be

sluggish

The block diagram of the classical continuous-time PID controller.

Figure 8.1: PID control

Tuning the controller involves adjusting the parameters Kp, Kd and Ki in order to

obtain a satisfactory response. The characteristics of PID controllers are well known
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and well established, and most modern controllers are based on some form of PID. The

input-output relationship of a PID controller can be expressed as

u(t) = Kp

[
e(t) +

1

Ti

∫ t

0

e(t)dt+ Td
de(t)

dt

]
(8.1)

Where u(t) is the output from the controller and e(t) = r(t) − y(t), in which r(t) is

the desired set-point (reference input) and y(t) is the plant output. Ti and Td are known

as the integral and derivative action time, respectively.

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
+ u0 (8.2)

Ki =
Kp

Ti
(8.3)

and

Kd = KpTd (8.4)

8.1 PID tuning

When a PID controller is used in a system it is important to tune the controller to

give the required response. Tuning a PID controller involves selecting values for the

controller parameters Kp, Ti and Td. There are many techniques for tuning a controller,

ranging from the �rst techniques described by J.G. Ziegler and N.B. Nichols (known as

the Ziegler�Nichols tuning algorithm) in 1942 and 1943, to recent auto-tuning controllers.

Ziegler and Nichols suggested values for the PID parameters of a plant based on open-loop

or closed-loop tests of the plant. According to Ziegler and Nichols, the open-loop transfer

function of a system can be approximated with a time delay and a single-order system.

8.2 Implementation PID controller

To implement the PID controller using a digital computer we have to convert from a

continuous to a discrete representation. There are several methods for doing this and

the simplest is to use the trapezoidal approximation for the integral and the backward

di�erence approximation for the derivative:

de(t)

dt
≈ e(kT )− e(kT − T )

T
(8.5)
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and ∫ t

0

e(t)dt ≈
n∑

k=1

Te(kT ) (8.6)

u(kT ) = Kp

[
e(kT ) + Td

e(kT )− e(kT − T )
T

+
T

Ti

n∑
k=1

e(kT )

]
+ u0 (8.7)

The PID given above is now in a suitable form that can be implemented on a digital

computer. This form of the PID controller is also known as the positional PID controller.

Notice that new control action is implemented at every sample time.

1. Explain the in�uence of Proportional control on the system.

2. Explain the in�uence of Integral control on the system.

3. Explain the in�uence of Derivative control on the system.

4. Draw the PID control block diagram of motor control.

5. Write the equation of PID control.

6. How is tunned PID control?

7. How to implement PID control into the digital system?

8. Write a C code of P control.

9. Write a C code of PD control.

10. Write a C code of PID control.
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9.1 Laboratory work 1

Wolf scaring device

Objectives of laboratory work

Understanding the parallel port as output

Developing practical skills

Learn to program parallel ports

Understanding registers of parallel ports

Laboratory assignments

Using ATmega32 connected with 2 buttons and with one LED, write a program that

blinks the LEDs in random sequences and frequencies. Imagine that it is an open-loop

system, and LEDs are placed in the yard that will scare wolves.

Figure 9.1: Wolf scaring device
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Figure 9.2: Device schematic

Example 9.1.1

Write an AVR C program to send values 00�FF to Port B.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main (void)

3 {

4 unsigned char z;

5 DDRB = 0xFF;

6 for (z = 0; z <= 255; z++)

7 PORTB = z; //PORTB is output

8 return 0;

9 )
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Example 9.1.2

Write an AVR C program to toggle all the bits of Port B 200 times.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main (void) //the code starts from here

3 {

4 DDRB = 0xFF; //PORTB is output

5 PORTB = 0xAA; //PORTS is 10101010

6 unsigned char z;

7 for(z=0; z < 200; z++) //run the next line 200 times

8 PORTB = ~ PORTB; //toggle PORTB

9 while(1); //stay here forever

10 return 0;

11 }

Example 9.1.3

Write ma AVR C program to send values of �4 to +4 to Port B.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main(void)

3 {

4 char mynun()= {-4,-3,-2,-1,0,1,2,3,4}

5 unsigned char z;

6 DDRB = 0xFF; //PORTB is output

7 for (z=0; z<=8; z++)

8 PORTB = mynun( z) ;

9 while(1); //stay here forever

10 return 0;

11 }

1. Write a program of Wolf scarring device

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.2 Laboratory work 2

Tra�c light control

Objectives of laboratory work

Understanding the parallel port as output

Developing practical skills

Learn to program parallel ports

Learn to write time delay using statements

Laboratory assignments

Using ATmega32 connected with 6 LEDs, write a program of the tra�c light. Imagine

that it is an open-loop system, and LEDs are placed in a crosswalk. Using statement get

time delay with di�erent times. For example, the red light will �ash 20 seconds, yellow

light 3 seconds and green light 15 seconds.

Figure 9.3: Tra�c light
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Figure 9.4: Tra�c light schematic

Example 9.2.1

Write an AVR C program to toggle all the bits of Port B continuously with a 100 ms

delay. Assume that the system is ATmega32 with XTAL = 8 MHz.

Solution:

1 #include <avr/io.h> //standard AVR header

2 void delay100ms()

3 {

4 unsigned int i;

5 for(i=0; i<42150; i++); //try different numbers on your

6 } //compiler and examine the result.

7 int main(void)

8 {

9 DDRB = 0xFF; //PORTB is output

10 while (1)

11 {

12 PORTB = 0xAA;

13 delay100ms();

14 PORTB = 0x55;

15 delay100ms();

16 }

17 return 0;

18 }
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Example 9.2.2

Write an AVR C program to toggle all the pins of Port C continuously with a 10 ms delay.

Use a prede�ned delay function in Win AVR.

Solution:

1 #include <util/delay.h> //delay loop functions

2 #include <avr/io.h> //standard AVR header

3 int main(void)

4 {

5 DDRB = 0xFF; //PORTB is output

6 while (1)

7 {

8 PORTB = 0xFF;

9 _delay_ms(10);

10 PORTB = 0x55;

11 _delay_ms(10);

12 }

13 return 0;

14 }

1. Write a program of Tra�c light control

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.3 Laboratory work 3

Road Automatic Speed Bump

Objectives of laboratory work

Understanding the parallel port as input

Developing practical skills

Learn to program parallel ports

Learn to connect switch, buttons to parallel ports

Understanding the work of pull-up resistor

Laboratory assignments

Using ATmega32 connected with 2 buttons and one led (motor). Imagine that these two

buttons are sensors and used to measure the speed of the car. If button 1 is pressed then

start counting until button 2 is pressed. If the counted value is small from some value

that's mean that the car is going very fast and led will light up (Speed bump goes up).

If the counted value is large that's mean that the car is going slow and light would not �ash.

Figure 9.5: Road automatic bump
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Figure 9.6: Road automatic bump schematic

Example 9.3.1

Write an AVR C program to get a byte of data from Port B, and then send it to Port C.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main(void)

3 {

4 unsigned char temp;

5 DDRB = 0x00; //Port B is input

6 DDRC = 0xFF; //Port C is output

7 while(1)

8 {

9 temp = PINB;

10 PORTC = temp;

11 }

12 return 0;

13 }
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Example 9.3.2

Write an AVR C program to get a byte of data from Port C. If it is less than 100, send

it to Port B; otherwise, send it to Port D.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main(void)

3 {

4 DDRC = 0; //Port C is input

5 DDRB = 0xFF; //Port B is output

6 DDRD = 0xFF; //Port D is output

7

8 unsigned char temp;

9 while(1)

10 {

11 temp = PINC; //read from PINC

12 if ( temp < 100 )

13 PORTB = temp;

14 else

15 PORTD = temp;

16 }

17 return 0;

18 }

1. Write a program of Road automatic speed bump

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.4 Laboratory work 4

Locker with Keypad

Objectives of laboratory work

Understanding the parallel port as input

Developing practical skills

Learn to program parallel ports

Understanding the work of keypad and learn to program it

Laboratory assignments

Using ATmega32 connected with 4x4 Keypad, write a program of the door locks. To open

the door you need to put right 4 digits in rights sequence. If you enter the right code

Green lights will �ash and if you enter the wrong code Red light will �ash.

Figure 9.7: 4x4 Keypad schematic
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Figure 9.8: 4x4 Keypad schematic

Example 9.4.1

Write an AVR C program to toggle only bit 4 of Port B continuously without disturbing

the rest of the pins of Port B.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main(void)

3 {

4 DDRB = 0xFF; //PORTB is output

5 while(1)

6 {

7 PORTB = PORTB | 0b00010000; //set bit 4 (5th bit) of PORTB

8 PORTB = PORTB & 0b11101111; //clear bit 4 (5th bit) of PORTB

9 }

10 return 0;

11 }
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Example 9.4.2

Write an AVR C program to monitor bit 5 of Port C. If it is HIGH, send 0x55 to Port B,

otherwise, send 0xAA to Port B.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main (void)

3 {

4 DDRB = 0xFF; //PORTB is output

5 DDRC = 0x00; //PORTC is input

6 DDRD = 0xFF; //PORTD is output

7 while(1)

8 {

9 if (PINC & 0b00100000) //check bit 5 (6th bit) of PINC

10 PORTB = 0x55;

11 else

12 PORTB = 0xAA;

13 }

14 return 0;

15 }

Example 9.4.3

Write an AVR C program to read pins 1 and 0 of Port B and issue an ASCII character

to Port D according to the following table:

pin1 pin0
0 0 send '0' to Port D
0 1 send '1' to Port D
1 0 send '2' to Port D
1 1 send '3' to Port D

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main (void)

3 {

4 unsigned char z;

5 DDRB = 0; //make Port B an input

6 DDRD = 0xFF; //make Port D an output

7 while(1) //repeat forever

8 {

9 z = PINB; //read PORTB

10 z = z & 0b00000011; //mask the unused bits

11 switch(z) //make decision

12 {

13 case (0):
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14 {

15 PORTD = '0'; //issue ASCII 0

16 break;

17 }

18 case (1):

19 {

20 PORTD = '1'; //issue ASCII 1

21 break;

22 }

23 case (2):

24 {

25 PORTD = '2'; //issue ASCII 2

26 break;

27 }

28 case (3):

29 {

30 PORTD ='3'; //issue ASCII 3

31 break;

32 }

33 }

34 }

35 return 0;

36 }

1. Write a program of Locker

2. Draw program algorithm of the program.
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9.5 Laboratory work 5

DC Motor Control

Objectives of laboratory work

Understanding the parallel port as output and input

Developing practical skills

Learn to program parallel ports

Understanding the work of DC motor

Laboratory assignments

Using ATmega32 connected to a small DC motor and with two buttons write a program

that changes the rotation direction of the motor. If button 1 pressed then the motor

rotates in a clockwise direction and if button 2 pressed motor rotates counter-clockwise

direction.

Figure 9.9: DC motor

Figure 9.10: DC motor schematic
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Example 9.5.1

The button is connected to bit 1 of Port B, and a motor is connected to bit 7 of Port C.

Write an AVR C program,when button is pressed, turn on the motor.

Solution:

1 #include <avr/io.h> //standard AVR header

2 int main(void)

3 {

4 DDRB = DDRB & 0b11111101; //pin 1 of Port B is input

5 DDRC = DDRC | 0b10000000; //pin 7 of Port C is output

6 while(1)

7 {

8 if (PINB & 0b00000010) //check pin 1 (2nd pin) of PINB

9 PORTC = PORTC | 0b10000000; //set pin 7 (8th pin) of PORTC

10 else

11 PORTC = PORTC & 0b01111111; //clear pin 7 (8th pin) of PORTC

12 }

13 return 0;

14 }

Example 9.5.2

Solution:

1 #include <avr/io.h> //standard AVR header

2 #define MOTOR 7

3 #define BUTTON 1

4 int main(void)

5 {

6 DDRB = DDRB & ~(1 << BUTTON); //BUTTON pin is input

7 DDRC = DDRC | (1 << MOTOR); //MOTOR pin is output

8 while(1)

9 {

10 if (PINB & (1<< BUTTON)) //check BUTTON pin of PINB

11 PORTC = PORTC | (1 << MOTOR); //set MOTOR pin of Port C

12 else

13 PORTC = PORTC & ~( 1<< MOTOR); //clear MOTOR pin of Port C

14 }

15 return 0;

16 }
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1. Write a program of DC motor control

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.6 Laboratory work 6

Stepper Motor Control

Objectives of laboratory work

Understanding the parallel port as output

Developing practical skills

Learn to program parallel ports

Understanding the work of Stepper motor

Laboratory assignments

Using ATmega32 connected to a small Stepper motor and with two buttons write a

program that changes the rotation direction of the motor. If button 1 pressed then the

motor rotates in a clockwise direction and if button 2 pressed motor rotates counter-

clockwise direction. Write a program that Stepper motor rotates in Full step and Half

step.

Figure 9.11: Stepper motor
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Figure 9.12: Stepper motor

Example 9.6.1

A switch is connected to pin PA7. Write a C program to monitor the status of SW and

perform the following:

(a) If SW = 0, the stepper motor moves clockwise.

(b) If SW = 1, the stepper motor moves counterclockwise.

Solution:

1 #define F_CPU 8000000UL //XTAL = 8 MHz

2 #include "avr/io.h"

3 #include "util/delay.h"

4 int main ()

5 {

6 DDRA = 0x00;

7 DDRB = 0xFF;

8 while (1)

9 {

10 if ( (PINA & 0x80) == 0)

11 {

12 PORTB = 0x66;

13 _delay_ms (100);

14 PORTB = 0xCC;

15 _delay_ms (100);

16 PORTB = 0x99;

17 _delay_ms (100);

18 PORTB = 0x33;

19 _delay_ms (100);

20 }

21 else

22 {

23 PORTB = 0x66;
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24 _delay_ms (100);

25 PORTB = 0x33;

26 _delay_ms (100);

27 PORTB = 0x99;

28 _delay_ms (100);

29 PORTB = 0xCC;

30 _delay ms (100);

31 }

32 }

33 }

1. Write a program of Stepper motor control

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.7 Laboratory work 7

Seven Segments Display

Objectives of laboratory work

Understanding the parallel port as output and input

Developing practical skills

Understanding dynamic lighting

Laboratory assignments

Using ATmega32 connected with 4 seven-segment LEDs, write a program that counts

pressed key value. When SW1 pressed the value is incremented and displayed in the

seven-segment display. When SW2 pressed the value is decremented and displayed in the

seven-segment display.

Example 9.7.1

A seven-segment display is a form of an electronic display device for displaying decimal

numbers. There are mainly two types of 7 segments display available. In a simple LED

package, typically all of the cathodes (negative terminals) or all of the anodes (positive

terminals) of the segment LEDs are connected and brought out to a common pin; this is

referred to as a �common cathode� or �common anode� device.

Figure 9.13: Types of seven segment

Seven segments each led has own letter.

Figure 9.14: Seven segment
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So we need program this 8 pin of PORTA to display our number on 7 segment display.

Following table shows the hex code of displaying digits with common cathode led.

Digit Hex code A B C D E F G DT
PORTA PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7

0 0x37 1 1 1 1 1 1 0 0
1 0x06 0 1 1 0 0 0 0 0
2 0x5B 1 1 0 1 1 0 1 0
3 0x4F 1 1 1 1 0 0 1 0
4 0x66 0 1 1 0 0 1 1 0
5 0x6D 1 0 1 1 0 1 1 0
6 0x7D 1 0 1 1 1 1 1 0
7 0x07 1 1 1 0 0 0 0 0
8 0x7F 1 1 1 1 1 1 1 0
9 0x6F 1 1 1 1 0 1 1 0

Connection with ATmega32 shown below.

Figure 9.15: Seven segment connected with ATmega32
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1 #define F_CPU 8000000UL

2 #include <avr/io.h>

3 #include <util/delay.h>

4 #define LED_Direction DDRA // define LED Direction

5 #define LED_PORT PORTA // define LED port

6

7 int main(void)

8 {

9 LED_Direction |= 0xff; // define LED port direction is output

10 LED_PORT = 0xff;

11

12 char array[]={0x37,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

13 // write hex value for CA display from 0 to

9

14 while(1)

15 {

16 for(int i=0;i<10;i++)

17 {

18 LED_PORT = array[i]; // write data on to the LED port

19 _delay_ms(1000); // wait for 1 second

20 }

21 }

22 }

1. Write a program of Seven Segments Display

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.8 Laboratory work 8

LCD Control

Objectives of laboratory work

Understanding the parallel port as output and input

Developing practical skills

Learn to program parallel ports

Learn to program LCD display

Laboratory assignments

Using ATmega32 connected with LCD display, write a program that counts pressed key

value. When SW1 pressed the value is incremented and displayed in the LCD display.

When SW2 pressed the value is decremented and displayed in the LCD display.

Figure 9.16: LCD display schematic
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Example 9.8.1

1 #include <avr/io.h> //standard AVR header

2 #include <util/delay.h> //delay header

3 #define LCD_DPRT PORTA //LCD DATA PORT

4 #define LCD_DDDR DDRA //LCD DATA DDR

5 #define LCD_DPIN PINA //LCD DATA PIN

6 #define LCD_CPRT PORTB //LCD COMMANDS PORT

7 #define LCD_CDDR DDRB //LCD COMMANDS DDR

8 #define LCD_CPIN PINB //LCD COMMANDS PIN

9 #define LCD_RS 0 //LCD RS

10 #define LCD_RW 1 //LCD RW

11 #define LCD_EN 2 //LCD EN

12

13 void lcdCommand ( unsigned char cmnd )

14 {

15 LCD_DPRT = cmnd; //send cmnd to data port

16 LCD_CPRT &= ~ (1<<LCD_RS); //RS = 0 for command

17 LCD_CPRT &= ~ (1<<LCD_RW); //RW = 0 for write

18 LCD_CPRT |= (1<<LCD_EN); //EN = 1 for H-to-L pulse

19 _delay_us(1); //wait to make enable wide

20 LCD_CPRT &= ~(1<<LCD_EN); //EN = 0 for H-to-L pulse

21 _delay_us(100); //wait to make enable wide

22 }

23

24 void lcdData ( unsigned char data )

25 {

26 LCD_DPRT = data; //send data to data port

27 LCD_CPRT |= (1<<LCD_RS); //RS =1 for data

28 LCD_CPRT &= (1<<LCD_RW); //RW = 0 for write

29 LCD_CPRT |= (1<<LCD_EN): //EN =1 for H-to-L pulse

30 _delay us(1); //wait to make enable wide

31 LCD_CPRT & = ~(1<<LCD_EN); //EN =0 for H-to-L pulse

32 _delay_us(100); //wait to make enable wide

33 }

34

35 void lcd_init()

36 {

37 LCD_DDDR = 0xFF;

38 LCD_CDDR = 0xFF;

39 LCD_CPRT &=~ (1<<LCD_EN); //LCD EN = 0

40 _delay_us(2000); //wait for init.

41 lcdCommand(0x38); //init. LCD 2 line, 5 x 7 matrix

42 lcdCommand(0x0E); //display on, cursor on

43 lcdCommand(0x01); //clear LCD

44 _delay_us(2000); //wait
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45 lcdCommand(0x06); //shift cursor right

46 }

47 void lcd_gotoxy(unsigned char x, unsigned char y)

48 {

49 unsigned char firstCharAdr[]={0x80,0xC0,0x94,0xD4};

50 lcdCommand(firstCharAdr[ y-1] + x - 1);

51 _delay_us(100);

52 }

53

54 void lcd_print( char * str )

55 {

56 unsigned char i = 0;

57 while(str[ i] !=0)

58 {

59 lcdData(str[i]);

60 i++ ;

61 }

62 }

63

64 int main (void)

65 {

66 lcd_init ();

67 lcd_gotoxy(1,1);

68 lcd_print("The world is but");

69 lcd_gotoxy(1,2);

70 lcd_print("one country");

71 while(1); //stay here forever

72 return 0;

73 }

1. Write a program of LCD Display

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.9 Laboratory work 9

Human Counting Device

Objectives of laboratory work

Understanding the counter

Learn to program counter

Understanding registers of Timer and Counters

Laboratory assignments

The laser sensor is connected to a counter pin of the ATmega32 pin. If laser light is cut

o� then the pulse of that signal counted and displayed on the LCD display.

The second work is that DC motor has a rotary encoder and its output signal is connected

to the counter pin of ATmega32. Show rotation count and rotation speed of the DC motor

on the LCD display.

Figure 9.17: Human counter system

Figure 9.18: DC motor with Rotation Encoder
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Figure 9.19: Human counter or rotation counter schematic

Example 9.9.1

Assuming that a 1 Hz clock pulse is fed into pin T0, use the TOV0 �ag to extend Timer0

to a 16-bit counter and display the counter on PORTC and PORTD.

Solution:

1 #include "avr/io.h"

2 int main ( )

3 {

4 PORTB = 0x01; //activate pull-up of PB0

5 DDRC = 0xFF; //PORTC as output

6 DDRD = 0xFF; //PORTD as output

7 TCCR0 = 0x06; //output clock source

8 TCNT0 = 0x00;

9 while (1)

10 {do

11 {PORTC = TCNT0;}

12 while((TIFR&(0x1<<TOV0))==0); //wait for TOVO to roll over

13 TIFR = 0xl<<TOV0; //clear TOV0

14 PORTD ++; //increment PORTD

15 }

16 }

1. Write a program of Human counting device and draw program algorithm.
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9.10 Laboratory work 10

Second meter

Objectives of laboratory work

Understanding the timers of ATmega32

Developing practical skills

Learn to program timers

Understanding registers of the timers

Laboratory assignments

Using ATmega32 connected with 3 buttons, write a program that counts seconds with

millisecond precisions. When SW1 is pressed Start count, when SW2 pressed Stop count

and when SW3 pressed Reset count. Use Timer0 and display count value on the LCD

display.

Figure 9.20: Second meter
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Example 9.10.1

Write a C program to toggle all the bits of PORTB continuously with some delay. Use

Timer0, Normal mode, and no prescaler options to generate the delay.

Solution:

1 #include "avr/io.h"

2 void T0Delay ( );

3 int main ( )

4 {

5 DDRB = 0xFF; //PORTB output port

6 while (1) //repeat forever

7 {

8 PORTB = 0x55;

9 T0Delay ( ); //delay size unknown

10 PORTB = 0xAA;

11 T0Delay ( );

12 }

13 }

14 void T0Delay ( )

15 {

16 TCNT0 = 0x20; //load TCNTO

17 TCCR0 = 0x01; //Timer0, Normal mode, no prescaler

18 while ((TIFR&0x1)==0); //wait for TF0 to roll over

19 TCCR0 = 0;

20 TIFR = 0xl; //clear TF0

21 }

Example 9.10.2

Write a C program to toggle only the PORTB.4 bit continuously every 70 us. Use Timer0,

Normal mode, and 1:8 prescaler to create the delay. Assume XTAL = 8 MHz.

Solution:

Tmachine cycle = 1/8 MHz

Prescaler = 1:8

Tclock = 8 x 1/8 MHz = 1 us

70 us/1 us = 70 clocks

1 + 0xFF � 70 = 0x100 � 0x46 = 0xBA = 186

1 #include "avr/io.h"

2 void T0Delay ( );

3 int main ( )

4 {

5 DDRB = 0xFF; //PORTB output port

6 while (1)

7 {

8 T0Delay ( ); //Timer0, Normal mode
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9 PORTB = PORTB ^ 0x10; //toggle PORTB.4

10 }

11 }

12

13 void T0Delay()

14 {

15 TCNT0= 186; //load TCNT0

16 TCCR0 = 0x02; //Timer0, Normal mode, 1:8 prescaler

17 while ((TIFR & (1<<TOV0))==0); //wait for TOV0 to roll over

18 TCCR0 = 0; //turn off Timer0

19 TIFR = 0xl; //clear TOV0

20 }

1. Write a program of Secondmeter

2. Draw program algorithm of the program.
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9.11 Laboratory work 11

Elevator Emergency System

Objectives of laboratory work

Understanding the ATmega32 external interrupts

Developing practical skills

Learn to program external interrupts

Understanding registers of external interrupts

Laboratory assignments

Using ATmega32 connected with 8 LEDs, write a program of the elevator. Imagine that

each LED indicates the �oor of the building, �rst led start blink and after 3 seconds

second led start blink and it continues until reach to the eight led like elevator goes up

and down. If the emergency button is pressed interrupt the main program and turn on

emergency light.

Figure 9.21: Elevator emergency system
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Example 9.11.1

Assume that the INT0 pin is connected to a switch that is normally high. Write a program

that toggles PORTC.3, whenever INT0 pin goes low. Use the external interrupt in level-

triggered mode.

Solution:

1 #include "avr/io.h"

2 #include "avr/interrupt.h"

3 int main ()

4 {

5 DDRC = 1<<3; //PC3 as an output

6 PORTD = 1<<2; //pull-up activated

7 GICR = (l<<INT0); //enable external interrupt 0

8 sei (); //enable interrupts

9 while (1); //wait here

10 }

11

12 ISR (INT0_vect) //ISR for external interrupt 0

13 {

14 PORTC ^= (1<<3); //toggle PORTC.3

15 }

1. Write a program of Elevator emergency system

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.12 Laboratory work 12

Temperature Controller

Objectives of laboratory work

Understanding the ADC of ATmega32

Developing practical skills

Learn to program ADC of ATmega32

Understanding registers of ADC

Laboratory assignments

Thermister connected to the ADC port of the ATmega32 controller. Read the analog

value of the thermister using ADC and take a characteristic of the sensor. Imagine that

this is a closed-loop system. If temperature greater than 30◦C turn on the motor using P

control. Display temperature value on the LCD display.

Figure 9.22: Temperature controller schematic

113



Chapter 9. Controller based projects

Example 9.12.1

1 #include<avr io.h> //standard AVR header

2 int main (void)

3 {

4 DDRB = 0xFF; //make PORTB an output

5 DDRD = 0xFF; //make PORTD an output

6 DDRA = 0; //make PORTA an input for ADC

input

7 ADCSRA= 0x87; //make ADC enable and select ck

/128

8 ADMUX= 0xC0; //2.56V Vref, ADC0 single ended

input

9 //data will be right-justified

10 while (1)

11 {

12 ADCSRA | = (1<<ADSC); //start conversion

13 while ((ADCSRA & (1<<ADIF)) == 0); //wait for conversion to finish

14 PORTD = ADCL; //give the low byte to PORTD

15 PORTB = ADCH; //give the high byte to PORTB

16 }

17 return 0;

18 }

1. Write a program of Temperature controller

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.13 Laboratory work 13

White Line Follower

Objectives of laboratory work

Understanding the ADC of ATmega32

Developing practical skills

Learn to program ADC of ATmega32

Understanding to use the PID controller

Understanding to use the photoresistor

Laboratory assignments

Using ATmega32 design white line following robot. The robot is di�erential wheeled and

has two photoresistors sensor which detects the white line. Write a program that follows

the white line using PID control. Imagine that it is a closed-loop system.

Figure 9.23: White line follower
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Figure 9.24: White line follower schematic

Example 9.13.1

With a couple light dependent resistors used as input, and a couple of motors driven

by PWM as output. It's switching back and forth between the two photocells, and the

reading from each one is assigned to the PWM compare value for its corresponding motor.

This way a motor slows down when its photocell is covered.

1 #define F_CPU 1000000

2 #include <avr/io.h>

3 #include <avr/interrupt.h>

4 #include <util/delay.h>

5 #include <stdint.h>

6

7 volatile const uint8_t adc2 = (1<<ADLAR) | 2;

8 volatile const uint8_t adc3 = (1<<ADLAR) | 3;

9

10 void initPWM ()

11 {

12 DDRB |= (1 << PB0) | (1 << PB1);

13 TCCR0A =

14 (1 << COM0A1) | // set OC0A on compare match, clear at TOP

15 (1 << COM0B1) | // set OC0B on compare match, clear at TOP

16 (1 << WGM01) | // fast PWM mode

17 (1 << WGM00);

18 TCCR0B = (1 << CS00); // prescaler = 1

19 }
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20

21 void initADC ()

22 {

23 ADMUX = (1 << ADLAR) | (1 << MUX1);

24 ADCSRA =

25 (1 << ADEN) | // Enable ADC

26 (1 << ADATE) | // auto trigger enable

27 (1 << ADIE) | // enable ADC interrupt

28 (1 << ADPS0) | // Prescaler = 8

29 (1 << ADPS1); // - 125KHz with 1MHz clock

30 ADCSRB = 0; // free running mode

31 sei();

32 ADCSRA |= (1 << ADSC); // start conversions

33 }

34

35 ISR(ADC_vect)

36 {

37 static uint8_t firstTime = 1;

38 static uint8_t val;

39 val = ADCH;

40 if (firstTime == 1)

41 firstTime = 0;

42

43 else if (ADMUX == adc2)

44 {

45 ADMUX = adc3;

46 OCR0A = val;

47 }

48

49 else if (ADMUX == adc3)

50 {

51 ADMUX = adc2;

52 OCR0B = val;

53 }

54 }

55

56 int main ()

57 {

58 initPWM ();

59 initADC ();

60

61 for (;;)

62 {

63 }

64 }
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1. Write a program of White line follower

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.14 Laboratory work 14

Stabilization of Rotational Speed of DC
Motor

Objectives of laboratory work

Understanding the PWM signal

Developing practical skills

Learn to program PID control

Understanding registers of timer and counters

Laboratory assignments

Imagine that it is a closed-loop system. Using PID control do stabilization of the rota-

tional speed of the DC motor with the PWM signal.

Figure 9.25: PID control for DC motor speed stabilization
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Example 9.14.1

Solution:

1 #include "avr/io.h"

2 int main ()

3 {

4 DDRB |= (1 << 3);

5 OCR0 = 191;

6 TCCR0 = 0x69; //Fast PWM, no prescaler, non-inverted

7 while (1);

8 return 0;

9 }

1. Write a program of DC motor speed control

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.15 Laboratory work 15

Pendulum Stabilization

Objectives of laboratory work

Understanding the PWM signal

Developing practical skills

Learn to program PID control

Understanding registers of timer and counters

Developing of the potentiometer as an angular sensor

Laboratory assignments

Using a potentiometer as an angular sensor do the stabilization of pendulum at a given

angle. DC motor with propeller takes vertical take-o� that changes the angle of pendulum.

Figure 9.26: PID control for Pendulum
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Figure 9.27: PID control for Pendulum schematic

Example 9.15.1

PID Algorithm generates a control variable from the current value, and the required

value. Since the aim is to keep the motor speed constant. The �rst function reads

(Read()) encoder value that measures the rotation speed of the motor. Second function

writes (Write()) PWM value to control motor.

1 #include <avr/io.h>

2 int Kp = 2 //PID constants

3 int Ki = 5

4 int Kd = 1

5 unsigned long currentTime, previousTime;

6 double elapsedTime;

7 double Error;

8 double lastError;

9 double input, output, setPoint;

10 double cumError, rateError;

11 setPoint = 100; //set point at zero

degrees

12 int main ()

13 {

14 while(1)

15 {

16 input = Read(A0); //read from rotary

encoder connected to A0

17 currentTime = millis(); //get current time
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18 elapsedTime = currentTime - previousTime; //compute time (dT)

19 error = Setpoint - inp; // determine error

20 cumError += error * elapsedTime; // compute integral

21 rateError = (error - lastError)/elapsedTime; // compute

derivative

22 output = Kp*error + Ki*cumError + Kd*rateError; //PID output

23 lastError = error; //remember current

error

24 previousTime = currentTime; //remember current time

25 Write(3, output); //control the motor

based on PID value

26 }

27 return 0;

28 }

1. Write a program of Pendulum stabilization

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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9.16 Laboratory work 16

Serial Communication

Objectives of laboratory work

Understanding the serial port

Developing practical skills

Learn to program serial port

Understanding registers of USART port

Laboratory assignments

Connect two ATmega32 controllers using the USART port. Do asynchronous data trans-

fer between those controllers.

Figure 9.28: USART connection

Example 9.16.1

Write a C program for the AVR to transfer the letter 'G' serially at 9600 baud, continu-

ously. Use 8-bit data and 1 stop bit. Assume XTAL = 8 MHz. Solution:

1 #include <avr/io.h> //standard AVR header

2 void usart_init (void)

3 {

4 UCSRB = (1<<TXEN);

5 UCSRC = (1<< UCSZ1) | (1<<UCSZO) | (1<<URSEL);
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6 UBRRL = 0x33;

7 }

8 void usart_send (unsigned char ch)

9 {

10 while (! (UCSRA & (1<<UDRE))); //wait until UDR is empty

11 UDR = ch; //transmit 'G'

12

13 }

14

15 int main (void)

16 {

17 usart_init(); //initialize the USART

18 while (1) //do forever

19 usart_send ('G'); //transmit 'G' letter

20 return 0;

21 }

Example 9.16.2

Program the AVR in C to receive bytes of data serially and put them on Port A. Set the

baud rate at 9600, 8-bit data, and 1 stop bit.

Solution:

1 #include <avr/io.b> //standard AVR header

2 int main (void)

3 {

4 DDRA = 0xFF; //Port A is input

5 UCSRB = (1<<RXEN); //initialize USART

6 UCSRC = (1<< UCSZ1) | (1<<UCSZO) | (1<<URSEL);

7 UBRRL = 0x33;

8 while (1)

9 {

10 while (! (UCSRA & (1<<RXC))); //wait until new data

11 PORTA = UDR;

12 }

13 return 0;

14 }

1. Write a program of Serial communication

2. Draw program algorithm of the program.

3. Make this device as a closed-loop system and draw its a block diagram
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