Co-funded by the Erasmus+ Programme of the European Union





## Mongolian University of Science and Technology

**Curriculum development and Registration office** 

| Course name                                                                                      | Semiconductor Integrated Circuit Technology                                                 |                              |                                |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--|--|
| Course code                                                                                      | F.EE702                                                                                     | Course credit                | 3                              |  |  |
| Department                                                                                       | Electronics                                                                                 | School                       | SICT                           |  |  |
| Pre-requisites<br>Course Code                                                                    | None                                                                                        | Co-requisites<br>Course code | None                           |  |  |
| Primary instructor                                                                               | Zagarzusem Khurelbaatar                                                                     | Room number                  | 220                            |  |  |
| E-mail address                                                                                   | zagarzusem@must.edu.mn                                                                      | Phone number                 | -                              |  |  |
| Other instructors                                                                                | structors None                                                                              |                              |                                |  |  |
| Learning Hours                                                                                   | Total: 144 Learning hours (2:2:0:5)<br>Lecture (32 hr), Seminar (32 hr), Assessment (80 hr) |                              |                                |  |  |
| Course type                                                                                      | Compulsory DElective                                                                        |                              |                                |  |  |
| Terms Offered                                                                                    | $\blacksquare$ 1 <sup>st</sup> Semester $\blacksquare$ 2 <sup>nd</sup> Ser                  | mester 🗆 Summer              | □ Year Long                    |  |  |
| INSTRUCTION LA                                                                                   | NGUAGE                                                                                      |                              |                                |  |  |
| Mongolian or Eng                                                                                 | lish                                                                                        |                              |                                |  |  |
| Learning Sources: ('                                                                             | Textbooks, journals, website a                                                              | addresses etc)               |                                |  |  |
| Textbooks:                                                                                       |                                                                                             |                              |                                |  |  |
| • G. E. Anner, <i>Planar Processing Primer</i> , Springer, ISBN: 978-94-009-0441-5, 1990.        |                                                                                             |                              |                                |  |  |
|                                                                                                  | Ning Fundamentals of Modern                                                                 | n VLSI Devices, 2nd          | Edition, Cambridge University  |  |  |
| Press, 978-0-521-                                                                                |                                                                                             |                              |                                |  |  |
| Supplemental mate                                                                                |                                                                                             |                              |                                |  |  |
| • S. M. Sze and M. K. Lee Semiconductor Devices: Physics and Technology, 3rd Edition, John Wiley |                                                                                             |                              |                                |  |  |
| ,                                                                                                | 978-0470-53794-7, 2012.<br>emiconductor Devices for Inte                                    | anatad Cinquita Doo          | roon/Prontice Hall 1st Edition |  |  |
| • C. Hu <i>Modern</i> S<br>ISBN: 978-01360                                                       | Č .                                                                                         | graiea Circuits, Fea         | Ison/Frentice Han, 1st Edition |  |  |
| 10011.71001300                                                                                   | <i>.</i>                                                                                    |                              |                                |  |  |
| <b>DESCRIPTION OF</b>                                                                            | THE COURSE                                                                                  |                              |                                |  |  |

understanding of the economic and technical trade-offs inherent in this industry.

AIMS AND OBJECTIVES OF THE COURSE

This course aims at understanding the manufacturing methods and their underlying scientific principles in the context of technologies used in VLSI chip and nano fabrication. The students will be provided with a completed guide for the semiconductor device design by using the modern CAD tools. Objectives:

- 1. Understanding of the modern CMOS technologies
- 2. Design of semiconductor device process
- 3. Explain MEMS and NEMS technologies

| Lectu | ire content:                                                                                                                                                                                                     | Hours |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| •     | Introduction, Historical perspective and technology trends.                                                                                                                                                      | 2     |
| •     | Modern CMOS technologies: CMOS process flow starting from substrate selection to multilevel metal formation, comparison between bulk and SOI CMOS technologies.                                                  | 2     |
| •     | Process integration                                                                                                                                                                                              | 2     |
| •     | Silicon wafer, crystal growth and wafer manufacturing: Crystal structure,<br>Czochralski and FZ growth methods, wafer preparation and specifications, SOI<br>wafer manufacturing.                                | 2     |
| •     | Clean rooms, wafer cleaning and gettering: Basic concepts, manufacturing methods and equipment, measurement methods                                                                                              | 2     |
| ٠     | Vacuum technology: Vacuum pumps                                                                                                                                                                                  | 2     |
| ٠     | Semiconductor computer aided design: Silvaco TCAD                                                                                                                                                                | 2     |
| •     | Oxidation: wet and dry oxidation, growth kinetics and models, defects, measurement methods and characterization.                                                                                                 | 2     |
| •     | Photolithography: light sources, Wafer exposure systems, Photoresists, Baking<br>and development, Mask making, Measurement of mask features and defects, resist<br>patterns and etched features.                 | 2     |
| •     | Nanofabrication by Self-Assembly                                                                                                                                                                                 | 2     |
| •     | Etching processes: Wet etching, Plasma etching, RIE, etching of materials used in VLSI, Modeling of etching.                                                                                                     | 2     |
| •     | Diffusion technology; Models for diffused layers, Characterization methods,<br>Segregation, Interfacial dopant pileup, oxidation enhanced diffusion, dopant-<br>defect interaction.                              | 2     |
| •     | Thin film deposition: Physical vapor deposition, epitaxial growth, manufacturing methods and systems, deposition of dielectrics and metals commonly used in VLSI, Modeling deposition processes.                 | 2     |
| ٠     | Thin film deposition: Chemical vapor deposition                                                                                                                                                                  | 2     |
| •     | Ion beam processing: Basic concepts, High energy and ultralow energy implantation, shallow junction formation & modeling, Electronic stopping, Damage production and annealing, RTA Process & dopant activation. | 2     |
| •     | Backend processes: Contacts, Vias, Multi-level Interconnects, Silicided gates and S/D regions, Reflow & planarization, Multi-chip modules and packaging.                                                         | 2     |
| Semi  | nar content:                                                                                                                                                                                                     | Hours |
| ٠     | Introduction, Historical perspective and technology trends.                                                                                                                                                      | 2     |
| •     | Modern CMOS technologies: CMOS process flow starting from substrate<br>selection to multilevel metal formation, comparison between bulk and SOI CMOS<br>technologies.                                            | 2     |

| Semiconductor economics, process integration                                                                                                                  |                                                                                                                 |                            | 2              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|----------------|--|--|--|
| • Silicon wafer, crystal growth and wafer manufacturing: Crystal structure,                                                                                   |                                                                                                                 |                            |                |  |  |  |
| Czochralski and FZ growth n                                                                                                                                   | 2                                                                                                               |                            |                |  |  |  |
| wafer manufacturing.                                                                                                                                          |                                                                                                                 |                            |                |  |  |  |
| • Clean rooms, wafer cleaning                                                                                                                                 | 2                                                                                                               |                            |                |  |  |  |
| methods and equipment, measurement methods                                                                                                                    |                                                                                                                 |                            |                |  |  |  |
| Vacuum technology: vacuum pumps                                                                                                                               |                                                                                                                 |                            |                |  |  |  |
| Examples of Silvaco TCAD                                                                                                                                      |                                                                                                                 |                            |                |  |  |  |
| • Oxidation: wet and dry oxidation, growth kinetics and models, defects,                                                                                      |                                                                                                                 |                            |                |  |  |  |
| measurement methods and characterization.                                                                                                                     |                                                                                                                 |                            |                |  |  |  |
| • Photolithography: light sources, Wafer exposure systems, Photoresists, Baking                                                                               |                                                                                                                 |                            |                |  |  |  |
| and development, Mask making, Measurement of mask features and defects, resist                                                                                |                                                                                                                 |                            |                |  |  |  |
| patterns and etched features.                                                                                                                                 |                                                                                                                 |                            |                |  |  |  |
|                                                                                                                                                               |                                                                                                                 |                            |                |  |  |  |
| • Etching processes: Wet etching, Plasma etching, RIE, Etching of materials used in                                                                           |                                                                                                                 |                            |                |  |  |  |
| VLSI, Modeling of etching.                                                                                                                                    |                                                                                                                 |                            |                |  |  |  |
| • Diffusion technology; Models for diffused layers, Characterization methods,                                                                                 |                                                                                                                 |                            |                |  |  |  |
| Segregation, Interfacial dopant pileup, oxidation enhanced diffusion, dopant-                                                                                 |                                                                                                                 |                            |                |  |  |  |
|                                                                                                                                                               | defect interaction.                                                                                             |                            |                |  |  |  |
| • Thin film deposition: Physical vapor deposition, epitaxial growth, manufacturing methods and systems, deposition of dialactrics and metals commonly used in |                                                                                                                 |                            |                |  |  |  |
|                                                                                                                                                               | methods and systems, deposition of dielectrics and metals commonly used in VLSI, Modeling deposition processes. |                            |                |  |  |  |
| <ul> <li>Thin film deposition: Chemical vapor deposition</li> </ul>                                                                                           |                                                                                                                 |                            |                |  |  |  |
| <ul> <li>Ion beam processing: Basic concepts, High energy and ultralow energy</li> </ul>                                                                      |                                                                                                                 |                            |                |  |  |  |
| • Ion beam processing. Basic concepts, right energy and utratow energy implantation, shallow junction formation & modeling, Electronic stopping,              |                                                                                                                 |                            |                |  |  |  |
| 1 5                                                                                                                                                           | ction and annealing, RTA Process & dopant activation.                                                           |                            |                |  |  |  |
| <ul> <li>Backend processes: Contacts, Vias, Multi-level Interconnects, Silicided gates and</li> </ul>                                                         |                                                                                                                 |                            |                |  |  |  |
| S/D regions, Reflow & planarization, Multi-chip modules and packaging.                                                                                        |                                                                                                                 |                            |                |  |  |  |
| TEACHING AND LEARNING ACTIVITY                                                                                                                                |                                                                                                                 |                            |                |  |  |  |
| Weekly contact hours: (2:0:2:5)-1×                                                                                                                            | 2 hours lecture, $1 \times 2$ hours labo                                                                        | oratory. Traditional and a | ctive learning |  |  |  |
| methods will be used within lecture,                                                                                                                          |                                                                                                                 |                            | C              |  |  |  |
| TEACHING METHODS                                                                                                                                              | TYPES OF TEACHING METHOD                                                                                        |                            | CLOs           |  |  |  |
| Problem based                                                                                                                                                 | ✓ Lecture                                                                                                       |                            | 1,2,3,4,5,6    |  |  |  |
| Inquire based                                                                                                                                                 | ✓ Laboratory                                                                                                    |                            | 7,8,9,10       |  |  |  |
| METHOD OF ASSESSMENT                                                                                                                                          |                                                                                                                 |                            |                |  |  |  |
| Assessment tools                                                                                                                                              | Assessment frequency                                                                                            | Weight                     | CLOs           |  |  |  |
| Attendance/participation in class                                                                                                                             | Weekly/ Every 3 weeks                                                                                           | 8%                         | 1,2,3,4        |  |  |  |
| Assessment                                                                                                                                                    | 8, 13 <sup>th</sup> week                                                                                        | 15%                        | 2,3,4,5,6      |  |  |  |
| Med-term                                                                                                                                                      | 8, 13 <sup>th</sup> week                                                                                        | 15%                        | 1,2,3,4        |  |  |  |
| Laboratory                                                                                                                                                    | Every 2 weeks                                                                                                   | 32%                        | 7,8,9,10       |  |  |  |
| Final exam                                                                                                                                                    | 17 <sup>th</sup> week                                                                                           | 30%                        | 1,2,3,4,9      |  |  |  |
| PREPARED:                                                                                                                                                     |                                                                                                                 |                            |                |  |  |  |
|                                                                                                                                                               | h.Zagarzusem                                                                                                    | Date: 201                  | 8/01/10        |  |  |  |
| BIBLIOGRAPHY                                                                                                                                                  |                                                                                                                 |                            |                |  |  |  |

1. G. E. Anner, *Planar Processing Primer*, Springer, ISBN: 978-94-009-0441-5, 1990.

2. Y. Taur and T. H. Ning *Fundamentals of Modern VLSI Devices*, 2nd Edition, Cambridge University Press, 978-0-521-83294-6, 2015.

3. https://dynamic.silvaco.com/

- 4. http://www.ocw.titech.ac.jp/
- 5. http://web.iitd.ac.in/~mamidala/id54.htm

6. https://www.pdx.edu/ece/ECE516